Publications by authors named "Ravit Ziv"

Syntenic genomic loci on human chromosome 8 and mouse chromosome 15 (mChr15) code for LY6/Ly6 (lymphocyte Ag 6) family proteins. The 23 murine family genes include eight genes that are flanked by the murine and genes and form an Ly6 subgroup referred to in this article as the Ly6a subfamily gene cluster. , also known as and , is a member of the Ly6a subfamily gene cluster.

View Article and Find Full Text PDF

Cleavage of the MUC1 glycoprotein yields two subunits, an extracellular alpha-subunit bound to a smaller transmembrane beta-subunit. Monoclonal antibodies (mAbs) directed against the MUC1 alpha-beta junction comprising the SEA domain, a stable cell-surface moiety, were generated. Sequencing of all seven anti-SEA domain mAbs showed that they clustered into four groups and sequences of all groups are presented here.

View Article and Find Full Text PDF

Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF.

View Article and Find Full Text PDF

The cell-surface glycoprotein MUC1 is a particularly appealing target for antibody targeting, being selectively overexpressed in many types of cancers and a high proportion of cancer stem-like cells. However the occurrence of MUC1 cleavage, which leads to the release of the extracellular α subunit into the circulation where it can sequester many anti-MUC1 antibodies, renders the target problematic to some degree. To address this issue, we generated a set of unique MUC1 monoclonal antibodies that target a region termed the SEA domain that remains tethered to the cell surface after MUC1 cleavage.

View Article and Find Full Text PDF

MUC1, a heavily glycosylated mucin, has generated considerable interest as a target for tumor killing because of its overexpression in malignancies. Full-length MUC1 (MUC1/TM) is proteolytically cleaved after synthesis generating alpha and beta subunits, which specifically bind in a noncovalent interaction. Although the beta chain remains on the cell surface, the alpha chain binds in an on-and-off interaction.

View Article and Find Full Text PDF

We report here syntenic loci in humans and mice incorporating gene clusters coding for secreted proteins each comprising 10 cysteine residues. These conform to three-fingered protein/Ly-6/urokinase-type plasminogen activator receptor (uPAR) domains that shape three-fingered proteins (TFPs). The founding gene is PATE, expressed primarily in prostate and less in testis.

View Article and Find Full Text PDF

MUC1 has generated considerable interest as a tumor marker and potential target for tumor killing. To date, most antibodies against MUC1 recognize epitopes within the highly immunogenic alpha chain tandem repeat array. A major shortcoming of such antibodies is that the MUC1 alpha chain is shed into the peripheral circulation, sequesters circulating antitandem repeat array antibodies, and limits their ability to even reach targeted MUC1-expressing cells.

View Article and Find Full Text PDF

MUC1, a glycoprotein overexpressed by a variety of human adenocarcinomas, is a type I transmembrane protein (MUC1/TM) that soon after its synthesis undergoes proteolytic cleavage in its extracellular domain. This cleavage generates two subunits, alpha and beta, that specifically recognize each other and bind together in a strong noncovalent interaction. Proteolysis occurs within the SEA module, a 120-amino acid domain that is highly conserved in a number of heavily glycosylated mucin-like proteins.

View Article and Find Full Text PDF

Genes that have been designated the name "MUC" code for proteins comprising mucin domains. These proteins may be involved in barrier and protective functions. The first such gene to be characterized and sequenced is the MUC1 gene.

View Article and Find Full Text PDF

A mechanism is described whereby one and the same gene can encode both a receptor protein as well as its specific ligand. Generation of this receptor-ligand partnership is effected by proteolytic cleavage within a specific module located in a membrane resident protein. It is postulated here that the "SEA" module, found in a number of heavily O-linked glycosylated membrane-associated proteins, serves as a site for proteolytic cleavage.

View Article and Find Full Text PDF