Publications by authors named "Ravisubhash Tangirala"

Nanoparticles have useful properties, but it is often important that they only start working after they are placed in a desired location. The encapsulation of nanoparticles allows their function to be preserved until they are released at a specific time or location, and this has been exploited in the development of self-healing materials and in applications such as drug delivery. Encapsulation has also been used to stabilize and control the release of substances, including flavours, fragrances and pesticides.

View Article and Find Full Text PDF

Inorganic nanocomposites have been prepared by assembling colloidal nanocrystals and then replacing the organic ligands with precursors to an inorganic matrix phase. Separate synthesis and processing of the nanocrystal and matrix phases allows complete compositional modularity and retention of the superlattice morphologies for sphere (see scheme; top) or rod (bottom) assemblies.

View Article and Find Full Text PDF

Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule's shell to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are driven to leave this region by the imposed flow.

View Article and Find Full Text PDF

The oil/water interfacial assembly of tobacco mosaic virus (TMV) has been studied in situ by tensiometry and small-angle X-ray and neutron scattering (SAXS and SANS). TMV showed different orientations at the perfluorodecalin/water interface, depending on the initial TMV concentration in the aqueous phase. At low TMV concentration, the rods oriented parallel to the interface, mediating the interfacial interactions at the greatest extent per particle.

View Article and Find Full Text PDF

Amphiphilic, PEGylated gold nanoparticles, of approximately 2 nm average core diameter, were synthesized by reduction of hydrogen tetrachloroaurate in the presence of the ligand (1-mercaptoundec-11-yl)tetra(ethylene glycol). These PEGylated gold nanoparticles were found to assemble cleanly at the oil-water interface. This self-assembly process gave a microencapsulated oil phase, water as the continuous phase, and a monolayer of gold nanoparticles at the oil-water interface.

View Article and Find Full Text PDF

Interfacial segregation of nanoparticles on droplets, such as water droplets in oil, is achieved by mixing or shaking organic solutions of the nanoparticles with water. This typically results in the formation of droplets with a large distribution of sizes, ranging from 10 microm to greater than 200 microm in diameter. Here we describe the application of track-etch membranes to control the size of these nanoparticle-coated droplets.

View Article and Find Full Text PDF