Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed.
View Article and Find Full Text PDFThe reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model--suggesting nonlinear terms and structural modifications--or even constructing a new model that agrees with the system's time series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions.
View Article and Find Full Text PDFInteractions among cellular constituents play a crucial role in overall cellular function and organization. These interactions can be viewed as being complementary to the usual "parts list" of genes and proteins and, in conjunction with the expression states of these parts, are key to a systems level understanding of the cell. Here, we review computational approaches to the understanding of the functional roles of cellular networks, ranging from "static" models of network topology to dynamical and stochastic simulations.
View Article and Find Full Text PDFBackground: In spite of the scale-free degree distribution that characterizes most protein interaction networks (PINs), it is common to define an ad hoc degree scale that defines "hub" proteins having special topological and functional significance. This raises the concern that some conclusions on the functional significance of proteins based on network properties may not be robust.
Methodology: In this paper we present three objective methods to define hub proteins in PINs: one is a purely topological method and two others are based on gene expression and function.
Motivation: This article describes the development of a useful graphical user interface for stochastic simulation of biochemical networks which allows model builders to run stochastic simulations of their models and perform statistical analysis on the results. These include the construction of correlations, power-spectral densities and transfer functions between selected inputs and outputs.
Availability: The software is licensed under the BSD open source license and is available at http://sourceforge.
Motivation: Large biochemical networks pose a unique challenge from the point of view of evaluating conservation laws. The computational problem in most cases exceeds the capability of available software tools, often resulting in inaccurate computation of the number and form of conserved cycles. Such errors have profound effects on subsequent calculations, particularly in the evaluation of the Jacobian which is a critical quantity in many other calculations.
View Article and Find Full Text PDF