Publications by authors named "Ravishankar K Iyer"

Background: Spinal synovial cysts are an uncommon pathology, estimated to affect 0.65-2.6% of the population.

View Article and Find Full Text PDF

Epilepsy patients often experience acute repetitive seizures, known as seizure clusters, which can progress to prolonged seizures or status epilepticus if left untreated. Predicting the onset of seizure clusters is crucial to enable patients to receive preventative treatments. Additionally, studying the patterns of seizure clusters can help predict the seizure type (isolated or cluster) after observing a just occurred seizure.

View Article and Find Full Text PDF

Background: Primary sclerosing cholangitis (PSC) patients have a risk of developing cholangiocarcinoma (CCA). Establishing predictive models for CCA in PSC is important.

Methods: In a large cohort of 1,459 PSC patients seen at Mayo Clinic (1993-2020), we quantified the impact of clinical/laboratory variables on CCA development using univariate and multivariate Cox models and predicted CCA using statistical and artificial intelligence (AI) approaches.

View Article and Find Full Text PDF

Background: Guidelines are needed to manage spinal cord infarctions. Here, we evaluated the incidence of noniatrogenic spinal ischemia, focusing on the spinal levels involved, and the relative efficacy of different management strategies.

Methods: We performed a meta-analysis of 147 patients who sustained noniatrogenic spinal cord ischemia within the past 10 years.

View Article and Find Full Text PDF

Specific brain structures (gray matter regions and white matter tracts) play a dominant role in determining cognitive decline and explain the heterogeneity in cognitive aging. Identification of these structures is crucial for screening of older adults at risk of cognitive decline. Using deep learning models augmented with a model-interpretation technique on data from 1432 Mayo Clinic Study of Aging participants, we identified a subset of brain structures that were most predictive of individualized cognitive trajectories and indicative of cognitively resilient vs.

View Article and Find Full Text PDF

Motivation: Telomeres are the repetitive sequences found at the ends of eukaryotic chromosomes and are often thought of as a 'biological clock,' with their average length shortening during division in most cells. In addition to their association with senescence, abnormal telomere lengths are well known to be associated with multiple cancers, short telomere syndromes and as risk factors for a broad range of diseases. While a majority of methods for measuring telomere length will report average lengths across all chromosomes, it is known that aberrations in specific chromosome arms are biomarkers for certain diseases.

View Article and Find Full Text PDF

Trends toward automation of synthetic biology and the individualization of biology and medicine raise varied and critical security issues. Digital biosecurity brings together researchers working in secure algorithms, vulnerability assessments, and emerging threat models. The fundamental goal of this digital biosecurity workshop is to identify and present distinct areas of research around making the next generation of biology safer and more secure.

View Article and Find Full Text PDF

Background & Aims: Saliva and stool microbiota are altered in cirrhosis. Since stool is logistically difficult to collect compared to saliva, it is important to determine their relative diagnostic and prognostic capabilities. We aimed to determine the ability of stool vs.

View Article and Find Full Text PDF

Study Design: This was a survey of the surgeon members of the Lumbar Spine Research Society (LSRS).

Objective: The purpose of this study was to assess trends in surgical practice and patient management involving elective and emergency surgery in the early months of the coronavirus pandemic.

Summary Of Background Data: The novel coronavirus has radically disrupted medical care in the first half of 2020.

View Article and Find Full Text PDF

The integration of viruses into the human genome is known to be associated with tumorigenesis in many cancers, but the accurate detection of integration breakpoints from short read sequencing data is made difficult by human-viral homologies, viral genome heterogeneity, coverage limitations, and other factors. To address this, we present Exogene, a sensitive and efficient workflow for detecting viral integrations from paired-end next generation sequencing data. Exogene's read filtering and breakpoint detection strategies yield integration coordinates that are highly concordant with long read validation.

View Article and Find Full Text PDF

Objective: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery.

View Article and Find Full Text PDF

Long read sequencing technologies have the potential to accurately detect and phase variation in genomic regions that are difficult to fully characterize with conventional short read methods. These difficult to sequence regions include several clinically relevant genes with highly homologous pseudogenes, many of which are prone to gene conversions or other types of complex structural rearrangements. We present PB-Motif, a new method for identifying rearrangements between two highly homologous genomic regions using PacBio long reads.

View Article and Find Full Text PDF

Heterogeneity in the clinical presentation of major depressive disorder and response to antidepressants limits clinicians' ability to accurately predict a specific patient's eventual response to therapy. Validated depressive symptom profiles may be an important tool for identifying poor outcomes early in the course of treatment. To derive these symptom profiles, we first examined data from 947 depressed subjects treated with selective serotonin reuptake inhibitors (SSRIs) to delineate the heterogeneity of antidepressant response using probabilistic graphical models (PGMs).

View Article and Find Full Text PDF

Introduction: Readmission and death in cirrhosis are common, expensive, and difficult to predict. Our aim was to evaluate the abilities of multiple artificial intelligence (AI) techniques to predict clinical outcomes based on variables collected at admission, during hospitalization, and at discharge.

Methods: We used the multicenter North American Consortium for the Study of End-Stage Liver Disease (NACSELD) cohort of cirrhotic inpatients who are followed up through 90-days postdischarge for readmission and death.

View Article and Find Full Text PDF

Background & Aims: Altered microbiota can affect the gut-liver-brain axis in cirrhosis and hepatic encephalopathy (HE), but the impact of sex on these changes is unclear. We aimed to determine differences in fecal microbiota composition/functionality between men and women with cirrhosis and HE on differing treatments.

Methods: Cross-sectional stool microbiome composition (16s rRNA sequencing) and microbial functional analyses were performed in men and women with cirrhosis, and controls.

View Article and Find Full Text PDF

Following publication of the original article [1], the author explained that Table 2 is displayed incorrectly. The correct Table 2 is given below. The original article has been corrected.

View Article and Find Full Text PDF

Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures.

View Article and Find Full Text PDF

Background: Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant calling in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational performance improvements have been introduced in GATK3.

View Article and Find Full Text PDF

We set out to determine whether machine learning-based algorithms that included functionally validated pharmacogenomic biomarkers joined with clinical measures could predict selective serotonin reuptake inhibitor (SSRI) remission/response in patients with major depressive disorder (MDD). We studied 1,030 white outpatients with MDD treated with citalopram/escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS; n = 398), Sequenced Treatment Alternatives to Relieve Depression (STAR*D; n = 467), and International SSRI Pharmacogenomics Consortium (ISPC; n = 165) trials. A genomewide association study for PGRN-AMPS plasma metabolites associated with SSRI response (serotonin) and baseline MDD severity (kynurenine) identified single nucleotide polymorphisms (SNPs) in DEFB1, ERICH3, AHR, and TSPAN5 that we tested as predictors.

View Article and Find Full Text PDF

Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex.

View Article and Find Full Text PDF

Background: With applications in cancer, drug metabolism, and disease etiology, understanding structural variation in the human genome is critical in advancing the thrusts of individualized medicine. However, structural variants (SVs) remain challenging to detect with high sensitivity using short read sequencing technologies. This problem is exacerbated when considering complex SVs comprised of multiple overlapping or nested rearrangements.

View Article and Find Full Text PDF
Article Synopsis
  • * Employing a case study on breast cancer cells treated with metformin, the study found that unsupervised methods could categorize single-cell populations based on gene expression patterns linked to anticancer effects.
  • * Experimentation on the identified gene CDC42 revealed that metformin's effect on downregulating this gene could reduce cancer cell migration and proliferation, highlighting the potential of machine learning in enhancing pharmacogenomics research and drug-disease understanding.
View Article and Find Full Text PDF

Major depressive disorder (MDD) is a heterogeneous disease. Efforts to identify biomarkers for sub-classifying MDD and antidepressant therapy by genome-wide association studies (GWAS) alone have generally yielded disappointing results. We applied a metabolomics-informed genomic research strategy to study the contribution of genetic variation to MDD pathophysiology by assaying 31 metabolites, including compounds from the tryptophan, tyrosine, and purine pathways, in plasma samples from 290 MDD patients.

View Article and Find Full Text PDF

This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation.

View Article and Find Full Text PDF

Recent research shows that gene expression changes appear to correlate well with the progression of many types of cancers. Using changes in gene expression as a basis, this paper proposes a data-driven 2-player game-theoretic model to predict the risk of adenocarcinoma based on Nash equilibrium. A key innovation in this work is the pay-off function which is a weighted composite of the expression of a cohort of tumor-suppressor genes (as one player) and an analogous cohort of oncogenes (as the other player).

View Article and Find Full Text PDF