Publications by authors named "Ravindra Thakkar"

Article Synopsis
  • Oxidative stress arises from an imbalance between reactive oxygen species (ROS) and the body’s antioxidant defenses, affecting cellular function and survival.
  • It plays a key role in regulating action potentials (APs) in excitable cells like neurons and myocytes, with implications for conditions such as neurodegenerative diseases and cardiac issues.
  • The review investigates how oxidative stress alters ion channel behavior and cellular dynamics, aiming to clarify its role in disease progression and potential treatment strategies.
View Article and Find Full Text PDF

Enhanced electrical activity in detrusor smooth muscle (DSM) cells is a key factor in detrusor overactivity which causes overactive bladder pathological disorders. Transient receptor potential melastatin-4 (TRPM4) channels, which are calcium-activated cation channels, play a role in regulating DSM electrical activities. These channels likely contribute to depolarizing the DSM cell membrane, leading to bladder overactivity.

View Article and Find Full Text PDF

Background: Due to the progressive decline in β-cell function, it is often necessary to utilize multiple agents with complementary mechanisms of action to address various facets and achieve glycemic control. Thus, this study aimed to evaluate the efficacy and safety of a fixed-dose combination (FDC) of metformin/sitagliptin/pioglitazone (MSP) therapy vs. metformin/sitagliptin (MS) in type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Although effective vaccines have been developed against SARS-CoV-2, many regions in the world still have low rates of vaccination and new variants with mutations in the viral spike protein have reduced the effectiveness of most available vaccines and treatments. There is an urgent need for a drug to cure this disease and prevent infection. The SARS-CoV-2 virus enters the host cell through protein-protein interaction between the virus's spike protein and the host's angiotensin converting enzyme (ACE2).

View Article and Find Full Text PDF

Proteins involved in immune checkpoint pathways, such as CTLA4, PD1, and PD-L1, have become important targets for cancer immunotherapy; however, development of small molecule drugs targeting these pathways has proven difficult due to the nature of their protein-protein interfaces. Here, using a hierarchy of computational techniques, we design a cyclic peptide that binds CTLA4 and follow this with experimental verification of binding and biological activity, using bio-layer interferometry, cell culture, and a mouse tumor model. Beginning from a template excised from the X-ray structure of the CTLA4:B7-2 complex, we generate several peptide sequences using flexible docking and modeling steps.

View Article and Find Full Text PDF

Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface.

View Article and Find Full Text PDF

A water extract derived from the isolated cell walls of (. , Chlorella water extract, CWE) was analyzed for the presence of lipopolysaccharide (LPS)-related material via the Limulus amebocyte lysate (LAL) assay and evaluated for its growth stimulation effect on the bone marrow cells and splenocytes in vitro cell cultures. The extract contained low levels of LPS-related material, and a mass spectrum suggested that the extract contained many components, including a low level of a lipid A precursor, a compound known as lipid X, which is known to elicit a positive response in the LAL assay.

View Article and Find Full Text PDF

The graphite-water interface provides a unique environment for polypeptides that generally favors ordered structures more than in solution. Therefore, systems consisting of designed peptides and graphitic carbon might serve as a convenient medium for controlled self-assembly of functional materials. Here, we computationally designed cyclic peptides that spontaneously fold into a β-sheet-like conformation at the graphite-water interface and self-assemble, and we subsequently observed evidence of such assembly by atomic force microscopy.

View Article and Find Full Text PDF

A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8 T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice.

View Article and Find Full Text PDF

A 9-y-old, castrated male, domestic medium-hair cat diagnosed previously with chronic kidney disease developed anorexia and vomiting. Ultrasonography revealed abdominal effusion and a left renal perihilar mass. Cytologic evaluation of the peritoneal fluid and mass identified atypical epithelioid cells suspected to be of renal epithelial or possible mesothelial origin.

View Article and Find Full Text PDF

Hydration layers are formed on hydrophilic crystalline surfaces immersed in water. Their existence has also been predicted for hydrophobic surfaces, yet the experimental evidence is controversial. Using 3D-AFM imaging, we probed the interfacial water structure of hydrophobic and hydrophilic surfaces with atomic-scale spatial resolution.

View Article and Find Full Text PDF

The partially purified water extract from Euglena gracilis (EWE) was evaluated for its antitumor and immunomodulatory effects in cell cultures and in a mouse orthotopic lung carcinoma allograft model. In two-dimensional cell culture, the EWE treatment inhibited cell growth of both murine Lewis lung carcinoma (LLC) and human lung carcinoma cells (A549 and H1299) in a dose- and time-dependent manner. In contrast, the growth of mouse bone marrow cells (BMCs), but not mouse splenocytes (SPLs), was stimulated by the treatment with EWE.

View Article and Find Full Text PDF

A colon cancer growth inhibitor partially purified from the isolated cell wall membrane fraction of , here referred to as membrane factor (CMF), was evaluated for its antitumor and immunomodulatory effects in cell culture and in a colon carcinoma mouse model. The CMF treatment dose- and time-dependently inhibited colon carcinoma cell growth in 2-dimensional cultures. Treatment with CMF also significantly inhibited the growth of colon carcinoma spheroids in 3-dimensional cell culture in coculture with T lymphocytes.

View Article and Find Full Text PDF

Adsorption of organic molecules from aqueous solution to the surface of carbon nanotubes or graphene is an important process in many applications of these materials. Here we use molecular dynamics simulation, supplemented by analytical chemistry, to explore in detail the adsorption thermodynamics of a diverse set of aromatic compounds on graphenic materials, elucidating the effects of the solvent, surface coverage, surface curvature, defects, and functionalization by hydroxy groups. We decompose the adsorption free energies into entropic and enthalpic components and find that different classes of compounds-such as phenols, benzoates, and alkylbenzenes-can easily be distinguished by the relative contributions of entropy and enthalpy to their adsorption free energies.

View Article and Find Full Text PDF

Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are highly biocompatible and have a versatile synthetic technique based on coprecipitation, reduction-precipitation, and hydrothermal methods, where Fe and Fe react in aqueous solutions; both these ions are present in our body and have clear metabolic pathways; therefore, they have attracted extensive research interest and development in the field of diagnostic imaging and therapy. However, most SPION-based clinical diagnostic contrast agents are discontinued due to severe pain, low transverse magnetic relaxivity range of 80-180 mM s, shorter circulation half-life, and lack of disease specificity. Therefore, in this study, we engineered a bone cancer-targeted hybrid nanoconstruct (HNC) with a high transverse magnetic relaxivity of 625 mM s, which was significantly higher than that of clinical contrast agents.

View Article and Find Full Text PDF

Background: Congenital myopathies (CMs) though considered distinct disorders, simultaneous occurrence of central nucleus, nemaline rods, and cores in the same biopsy are scarcely reported.

Objective: A retrospective reassessment of cases diagnosed as CMs to look for multiple pathologies missed, if any, during the initial diagnosis.

Materials And Methods: Enzyme histochemical, and immunohistochemical-stained slides from 125 cases diagnosed as congenital myopathy were reassessed.

View Article and Find Full Text PDF

Astroblastomas are extremely rare neuroepithelial tumors of uncertain histogenesis, affecting children and young adults, and constitute a new addition to the WHO 2000 classification of CNS tumors. We report the largest series of nine cases diagnosed in a single institute over the last 13 years and review published literature. Mean age at presentation was 12.

View Article and Find Full Text PDF