Publications by authors named "Ravindra P Jumde"

Article Synopsis
  • The development of antiviral drugs for SARS-CoV-2 is essential due to limited treatment options and the possibility of reinfection after vaccination.
  • Two key viral targets for drug development are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), which are crucial for the virus's survival.
  • The study utilizes target-directed dynamic combinatorial chemistry (tdDCC) to find compounds that inhibit the interactions of essential viral proteins, resulting in a new class of inhibitors that show antiviral activity against coronaviruses.
View Article and Find Full Text PDF
Article Synopsis
  • Efflux is a universal biological process in cells that helps remove various substances, including antibiotics, which can lead to multidrug resistance (MDR) in bacteria through the activity of efflux pumps, particularly in Gram-negative bacteria.
  • Over 50 potential efflux inhibitors have been identified to combat antibiotic resistance, but none have been successfully used in clinical settings due to challenges like toxicity and the complexity of bacteria's efflux systems.
  • Recent advancements in research tools, such as molecular docking models, show promise for developing new efflux inhibitors that could enhance the efficacy of existing antibiotics.
View Article and Find Full Text PDF

Even with the aid of the available methods, the configurational assignment of natural products can be a challenging task that is prone to errors, and it sometimes needs to be corrected after total synthesis or single-crystal X-ray diffraction (XRD) analysis. Herein, the absolute configuration of amidochelocardin is revised using a combination of XRD, NMR spectroscopy, experimental ECD spectra, and time-dependent density-functional theory (TDDFT)-ECD calculations. As amidochelocardin was obtained via biosynthetic engineering of chelocardin, we propose the same absolute configuration for chelocardin based on the similar biosynthetic origins of the two compounds and result of TDDFT-ECD calculations.

View Article and Find Full Text PDF

RAD51 is an ATP-dependent recombinase, recruited by BRCA2 to mediate DNA double-strand breaks repair through homologous recombination and represents an attractive cancer drug target. Herein, we applied for the first-time protein-templated dynamic combinatorial chemistry on RAD51 as a hit identification strategy. Upon design of -acylhydrazone-based dynamic combinatorial libraries, RAD51 showed a clear templating effect, amplifying 19 -acylhydrazones.

View Article and Find Full Text PDF

Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against and during subsequent tdDCC runs.

View Article and Find Full Text PDF

Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound. To explore the effect of molecular editing, selectively modified oligosaccharides were prepared a convergent α-selective strategy. Incubation experiments in purified α-amylase and α-glucosidase, and in human and murine blood serum, provide insight into the influence of fluorine on the hydrolytic stability of these clinically important scaffolds.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are involved in a spectrum of physiological processes, rendering them attractive targets for small-molecule drug discovery. Strategies to achieve selective inhibition continue to be intensively pursued, facilitated by advances in structural biology. Herein, we harness MMPs 2, 8, 9, and 13 to validate the difluoro motif as a hybrid bioisostere of CF and Et (BITE) in a series of modified barbiturate inhibitors.

View Article and Find Full Text PDF

To address the global challenge of emerging antimicrobial resistance, the hitherto most successful strategy to new antibiotics has been the optimization of validated natural products; most of these efforts rely on semisynthesis. Herein, we report the semisynthetic modification of amidochelocardin, an atypical tetracycline obtained via genetic engineering of the chelocardin producer strain. We report modifications at C4, C7, C10 and C11 by the application of methylation, acylation, electrophilic substitution, and oxidative C-C coupling reactions.

View Article and Find Full Text PDF

Fluorinated motifs have a venerable history in drug discovery, but as C(sp )-F-rich 3D scaffolds appear with increasing frequency, the effect of multiple bioisosteric changes on molecular recognition requires elucidation. Herein we demonstrate that installation of a 1,3,5-stereotriad, in the substrate for a commonly used lipase from Pseudomonas fluorescens does not inhibit recognition, but inverts stereoselectivity. This provides facile access to optically active, stereochemically well-defined organofluorine compounds (up to 98 % ee).

View Article and Find Full Text PDF

General methods to prepare chiral pyridine derivatives are greatly sought after due to their significance in medicinal chemistry. Here, we report highly enantioselective catalytic transformations of poorly reactive β-substituted alkenyl pyridines to access a wide range of alkylated chiral pyridines. The simple methodology involves reactivity enhancement via Lewis acid (LA) activation, the use of readily available and highly reactive Grignard reagents, and a copper-chiral diphosphine ligand catalyst.

View Article and Find Full Text PDF

Inexpensive and readily available organomagnesium reagents were used for the catalytic enantioselective alkylation of enolizable N-sulfonyl ketimines. The low reactivity and competing enolization of the ketimines was overcome by the use of a copper-phosphine chiral catalyst, which also rendered the transformation highly chemoselective and enantioselective for a broad range of ketimine substrates.

View Article and Find Full Text PDF

α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines.

View Article and Find Full Text PDF

Catalytic asymmetric conjugate addition reactions represent a powerful strategy to access chiral molecules in contemporary organic synthesis. However, their applicability to conjugated alkenyl-N-heteroaromatic compounds, of particular interest in medicinal chemistry, has lagged behind applications to other substrates. We report a highly enantioselective and chemoselective catalytic transformation of a wide range of β-substituted conjugated alkenyl-N-heteroaromatics to their corresponding chiral alkylated products.

View Article and Find Full Text PDF

The straightforward synthesis of polystyrene-supported Chinchona alkaloids and their application in the asymmetric dimerization of ketenes is reported. Six different immobilized derivatives, consisting of three dimeric and two monomeric 9-O ethers, were prepared by "click" anchoring of soluble alkaloid precursors on to azidomethyl resins. The resulting insoluble polymer-bound (IPB) organocatalysts were employed for promoting the dimerization of in-situ generated ketenes.

View Article and Find Full Text PDF

A preparative protocol to synthesize large quantities of size-controlled gold nanoparticles (Au NPs), stabilized by CH3O-PEG5000-SH (PEG-SH) in aqueous medium, is reported. The combination of metal vapor synthesis (MVS) technique with digestive ripening process allowed to obtain PEGylated Au NPs with mean core particle size of 3.8nm and hydrodynamic diameters centered at 8.

View Article and Find Full Text PDF

The enantioselective organocatalytic methanolysis of cis-1,2,3,6-tetrahydrophthalic anhydride mediated by quinidine derivatives with pyridazine or anthraquinone core was investigated, carrying out a detailed nuclear magnetic resonance study of the conformational preferences of the alkaloid catalysts in the pure solvent and in the presence of the reaction substrates and products. No significant interaction between the meso-anhydride and the alkaloid derivatives was detected. In contrast, evidence for a considerable influence of the alcohol reactant on the conformational state of some of the chiral organocatalysts could be obtained, which lends support to the hypothesis of general-base catalysis mechanism, as opposed to the nuclephilic one.

View Article and Find Full Text PDF