Publications by authors named "Ravindra N Bulakhe"

Anode materials storing large-scale lithium ions gradually decrease electrochemical performance due to severe volume changes during cycling. Therefore, there is an urgent need to develop anode materials with high electrochemical capacity and durability, without deterioration arising due to the volume changes during the electrochemical processes. To date, mesoporous materials have received attention as anode materials due to their ability to mitigate volume expansion, offer a short pathway for Li transport, and exhibit anomalous high capacity.

View Article and Find Full Text PDF

In this study, a catalyst composite of Co-Cu was prepared from chloride-containing precursor of Co(II) and Cu(II) metals using the milky latex of the plant following green principles of synthesis. The catalyst composite was characterized using XRD, EDAX, SEM, HR-TEM, FTIR, XPS and TOF-MS. The crystallinity of the mixed-oxide composite with a distorted octahedral nature was confirmed from analysis.

View Article and Find Full Text PDF

This study describes the single-step synthesis of a mesoporous layered nickel-chromium-sulfide (NCS) and its hybridization with single-layered graphene oxide (GO) using a facile, inexpensive chemical method. The conductive GO plays a critical role in improving the physicochemical and electrochemical properties of hybridized NCS/reduced GO (NCSG) materials. The optimized mesoporous nanohybrid NCSG is obtained when hybridized with 20% GO, and this material exhibits a very high specific surface area of 685.

View Article and Find Full Text PDF

The layer-by-layer mesoporous nanohybrids of Ni-Cr-layered double hydroxide (Ni-Cr-LDH) and polyoxotungstate nanoclusters (Ni-Cr-LDH-POW) are prepared via exfoliation reassembling strategy. The intercalative hybridization of Ni-Cr-LDH with POW nanoclusters leads to forming a layer-by-layer stacking framework with significant expansion of the interplanar spacing and surface area. The aqueous hybrid supercapacitor (AHSC) and all-solid-state hybrid supercapacitor (SSHSC) devices are fabricated using Ni-Cr-LDH-POW nanohybrid as a cathode and reduced graphene oxide (rGO) as an anode material.

View Article and Find Full Text PDF

This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS) as its electrode. While molybdenum hexacarbonyl [Mo(CO)] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS, HS plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS film on a Si/SiO substrate.

View Article and Find Full Text PDF

La Se nanoflakes were prepared from an aqueous medium by means of a chemical-bath deposition method and were later utilized as a supercapacitor electrode. X-ray diffraction (XRD), Fourier transform Raman (FT Raman), field-emission scanning electron microscopy (FESEM), and contact-angle measurement techniques were used to study the structural, morphological, and wettability properties of La Se films. The XRD study confirmed the cubic crystal structure of the La Se film.

View Article and Find Full Text PDF

The paper presents the experimental studies pertaining to the adsorption of bovine serum albumin (BSA) on the nanoparticles of nickel ferrite (NiFe2O4) with a view of correlating the adsorption properties to their microstructure and zeta potentials. Physical properties of two kinds of nickel ferrites, one synthesized by thermal plasma route and the other by chemical co-precipitation method, are compared. Maximum adsorption (231.

View Article and Find Full Text PDF