This present work demonstrated the functional transformation of 3D printed metal substrates into a new family of Surface-enhanced Raman Scattering substrates, a promising approach in developing SERS-based Point-of-care (PoC) analytical platforms. l-Powder Bed Fusion (l-PBF, Additive manufacturing or 3D printing technique) printed metal substrates have rough surfaces, and exhibit high thermal stability and intrinsic chemical inertness, necessitating a suitable surface functionalization approach. This present work demonstrated a unique multi-stage approach to transform l-PBF printed metal structures as recyclable SERS substrates by colloidal carbon templating, chemical vapor deposition, and electroless plating methods sequentially.
View Article and Find Full Text PDFDrinking water utilities are increasingly facing the challenges of maintaining water quality, and simultaneously complying with conflicting regulatory standards. One such challenge is the dosage of chlorine-based disinfectants which is typically regulated to prevent microbial growth in the water distribution systems, while limiting disinfection by-products (DBPs). On the other hand, chlorine residuals also influence the dissolution of lead into drinking water from corrosion scales in the pipe internals, as has been shown by previous studies.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2005
A multi-objective optimization formulation that reflects the multi-substrate optimization in a multi-product fermentation is proposed in this work. This formulation includes the application of epsilon-constraint to generate the trade-off solution for the enhancement of one selective product in a multi-product fermentation, with simultaneous minimization of the other product within a threshold limit. The formulation has been applied to the fed-batch fermentation of Aspergillus niger that produces a number of enzymes during the course of fermentation, and of these, catalase and protease enzyme expression have been chosen as the enzymes of interest.
View Article and Find Full Text PDF