Publications by authors named "Ravindra B Chougale"

Biodegradable and sustainable food preservation materials have gained immense global importance to mitigate plastic pollution and environmental impact. Biopolymers like cellulose offer significant advantages for food preservation, including biodegradability and the ability to extend shelf life. Therefore, the present study aims to prepare gallic acid (GA) and zinc oxide nanoparticles (ZnO NPs) incorporated methylcellulose (MC) composite films by employing a solvent casting technique.

View Article and Find Full Text PDF

Methylcellulose, a prominent polysaccharide prevalent in the food sector, was considered to fabricate the active films with glutaraldehyde as a crosslinker and Noni (Morinda citrifolia) Leaf Extract (NLE) as an active agent. FTIR analysis confirms the intermolecular -OH bonding, and SEM micrograms demonstrate methylcellulose active films' homogeneous, dense morphologic appearance. Due to the crosslinking effect of glutaraldehyde and noni leaf extract, tensile strength (41.

View Article and Find Full Text PDF

The development of green materials for active packaging applications is a research hotspot due to setbacks of petrochemical derived plastics. Thus, the present study aims to develop ternary blend films by doping different wt% of Tragacanth gum (TG) to Poly(vinyl alcohol)/Chitosan (PC) blend using solvent evaporation technique. Further, their various physicochemical properties were evaluated systematically.

View Article and Find Full Text PDF

In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix.

View Article and Find Full Text PDF

Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs.

View Article and Find Full Text PDF

Natural extract-based bio-composite material for wound healing is gaining much attention due to risk of infection and high cost of commercial wound dressing film causes serious problem on the human well-being. Herein, the study outlines the preparation of Poly (vinyl alcohol)/Chitosan/Basella alba stem extract (BAE) based bio-composite film through solvent casting technique and well characterized for wound healing application. Incorporation of BAE into Poly (vinyl alcohol)/Chitosan matrix has shown existence of secondary interactions confirmed by FT-IR analysis.

View Article and Find Full Text PDF

The present study contributes the synthesis of active films with the incorporation of moringa extract (ME) into chitosan (CS)/guar gum (GG)/poly(vinyl alcohol) (PVA) matrix (CGPM) by simple solvent casting technique. The effect of ME on the mechanical, thermal, structural and morphological properties of CGPM active films were investigated. ME has shown a marked influence on the optical, thermal properties and swelling behaviour of CGPM active films.

View Article and Find Full Text PDF

Herein, we developed clove essential oil (CEO) loaded Chitosan-ZnO hybrid nanoparticles (CS-ZnO@CEO (CZC NPs)) integrated chitosan/pullulan (CS/PL) nanocomposite films. SEM images revealed a homogenous distribution of CZC NPs with minimum aggregation in nanocomposite films. The incorporation of CZC NPs led to enhanced tensile strength (~39.

View Article and Find Full Text PDF

In the current study, the bioactive films of chitosan/white turmeric (CH/WT) were prepared by employing solvent casting technique and analyzed their physicochemical and biological properties for active packaging applications. The successful inclusion of white turmeric into the chitosan matrix is confirmed by Fourier Transform Infrared Spectroscopy. Due to the presence of hydrogen bonding interaction, the active films exhibited good tensile properties, smooth surface morphology, miscibility, water resistance and UV barrier properties.

View Article and Find Full Text PDF

The current work aims to prepare biologically active and pH responsive smart films based on Chitosan (CS)/Methylcellulose (MC) matrix integrated with Phyllanthus reticulatus (PR) ripen fruit anthocyanin. The prepared smart films (CMPR) were fabricated through a cost-effective solvent casting technique. The existences of secondary interactions were confirmed by the FT-IR analysis.

View Article and Find Full Text PDF

The present work aims to prepare Chitosan (CS)/Guar gum (GG)/Poly(vinyl alcohol) (PVA) cross-linked with Hydroxy citric acid (HCA) (CGPH active film) by solvent casting technique. The influence of HCA on different CS/PVA ratio (1:3, 1:1, 3:1) in presence of the fixed amount of GG (0.2%) was investigated.

View Article and Find Full Text PDF

The natural polymer Tragacanth Gum is less explored as a supporting matrix, there are very less studies conducted using this polymer in literature. So the present study aims to explore the consequences of different weight percent (wt.%) of gallic acid (GA) on physicochemical properties of Poly (vinyl alcohol)/Tragacanth Gum blend films.

View Article and Find Full Text PDF

Present work aimed to develop active packaging films based on chitosan (CS), poly (vinyl alcohol) (PVA) and boswellic acid (BA), and to evaluate the effect of BA on multifunctional properties of CS/PVA (CPBA) active films. Different compositions of active packaging films were prepared by the solvent casting method. The results indicated that incorporation of BA enhanced the ultraviolet blocking, morphology, mechanical properties, water solubility and hydrophilicity of the CPBA active films.

View Article and Find Full Text PDF

Ethyl vanillin (EV) incorporated chitosan (CS)/poly(vinyl alcohol)(PVA) blend films of various ratios (1:3, 1:1 and 3:1) were prepared by solvent casting technique. The effect of EV on the mechanical, structural, barrier, optical, food compatibility and antibacterial properties of the CS/PVA films were investigated. Mechanical properties showed that addition of EV increased tensile strength of CPEV-1, CPEV-2 and CPEV-3 films by 39 %, 45 % and 86 %, respectively compared to CS/PVA matrix.

View Article and Find Full Text PDF