Rationale And Objectives: To determine the in vivo feasibility of quantifying early degenerative changes in patellofemoral joint of symptomatic human knee using spin-lattice relaxation time in the rotating frame (T(1rho)) magnetic resonance imaging (MRI).
Materials And Methods: All the MRI experiments were performed on a 1.5 T whole-body GE Signa clinical scanner using a custom built 15-cm diameter transmit-receive quadrature birdcage radiofrequency coil.
The purpose of this study was to demonstrate the feasibility of computing three-dimensional relaxation maps of spin-lattice relaxation time in the rotating frame (T1rho) from in vivo magnetic resonance (MR) images of the human patellofemoral joint. T1rho was measured by applying a three-dimensional gradient-echo pulse sequence in six healthy subjects and one symptomatic subject by using a 1.5-T MR imager and a 15-cm-diameter transmit-receive quadrature birdcage radiofrequency coil.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2003
Purpose: To demonstrate the in vivo feasibility of measuring spin-lattice relaxation time in the rotating frame (T(1rho)); and T(1rho)-dispersion in human femoral cartilage. Furthermore, we aimed to compute the baseline T(1rho)-relaxation times and spin-lock contrast (SLC) maps on healthy volunteers, and compare relaxation times and signal-to-noise ratio (SNR) with corresponding T(2)-weighted images.
Materials And Methods: All MR imaging experiments were performed on a 1.
Rationale And Objectives: The authors performed this study to (a) measure changes in T2 relaxation rates, signal-to-noise ratio (SNR), and contrast with sequential depletion of proteoglycan in cartilage; (b) determine whether there is a relationship between the T2 relaxation rate and proteoglycan in cartilage; and (c) compare the T2 mapping method with the spin-lattice relaxation time in the rotating frame (T1rho) mapping method in the quantification of proteoglycan-induced changes.
Materials And Methods: T2- and T1rho-weighted magnetic resonance (MR) images were obtained in five bovine patellae. All images were obtained with a 4-T whole-body MR unit and a 10-cm-diameter transmit-receive quadrature birdcage coil tuned to 170 MHz.
Purpose: To quantify glycosaminoglycans (GAG) in intact bovine patellar cartilage using the proton spin-lock ratio imaging method. This approach exploits spin-lattice relaxation time in the rotating frame (T(1rho)) imaging and T(1rho) relaxivity (R(1rho)).
Materials And Methods: All the magnetic resonance imaging (MRI) experiments were performed on a 4-T whole-body GE Signa scanner (GEMS, Milwaukee, WI), and spectroscopy experiments of chondroitin sulfate (CS) phantoms were done on a 2-T custom-built spectrometer.