Background & Aims: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis.
View Article and Find Full Text PDFSerotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood.
View Article and Find Full Text PDFBackground: Alcohol-Associated Liver Disease (ALD) is a leading cause of liver mortality. Mechanisms responsible for severe ALD and the roles of gut microbiota are not fully understood. Multi-omics tools have enabled a better understanding of metabolic alterations and can aid in identifying metabolites as biomarkers for severe ALD.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome.
View Article and Find Full Text PDFBile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD).
View Article and Find Full Text PDFNa/H exchanger-3 (NHE-3) is the major apical membrane transporter involved in vectorial Na absorption in the intestine. Dysregulation of NHE-3 expression and/or function has been implicated in pathophysiology of diarrhea associated with gut inflammation and infections. Therefore, it is critical to understand the mechanisms involved in the regulation of NHE-3 expression.
View Article and Find Full Text PDFBackground & Aims: Normal gestation involves a reprogramming of the maternal gut microbiome (GM) that contributes to maternal metabolic changes by unclear mechanisms. This study aimed to understand the mechanistic underpinnings of the GM-maternal metabolism interaction.
Methods: The GM and plasma metabolome of CD1, NIH-Swiss, and C57 mice were analyzed with the use of 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry throughout gestation.
Am J Physiol Gastrointest Liver Physiol
August 2021
Short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fiber exert myriad of beneficial effects including the amelioration of inflammation. SCFAs exist as anions at luminal pH; their entry into the cells depends on the expression and function of monocarboxylate transporters. In this regard, sodium-coupled monocarboxylate transporter-1 (SMCT-1) is one of the major proteins involved in the absorption of SCFA in the mammalian colon.
View Article and Find Full Text PDFNiemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol are not fully understood due to the lack of a suitable NPC1L1 substrate that can be traced by fluorescence imaging and biochemical methods. 27-Alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol.
View Article and Find Full Text PDFBackground & Aims: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis.
View Article and Find Full Text PDFFront Med (Lausanne)
September 2020
Non-alcoholic fatty liver disease (NAFLD) is a major health problem associated with obesity and other features of the metabolic syndrome including insulin resistance and dyslipidemia. The accumulation of lipids in hepatocytes causes liver damage and triggers inflammation, fibrosis, and cirrhosis. Beside fatty acids and triglycerides, evidence showed an increased accumulation of free cholesterol in the liver with subsequent toxic effects contributing to liver damage.
View Article and Find Full Text PDFP-glycoprotein (Pgp/MDR1) serves as a biological barrier that protects intestinal epithelial cells (IECs) by transporting out xenobiotics and bacterial toxins. Decreased Pgp function and expression has been seen in mouse models of inflammatory colitis and also in patients with IBD. Pgp knockout mice spontaneously develop severe colitis, which is also seen in human patients with ulcerative colitis.
View Article and Find Full Text PDFBackground: Diagnosis and monitoring of inflammatory bowel diseases (IBDs) utilize invasive methods including endoscopy and tissue biopsy, with blood tests being less specific for IBDs. Substantial evidence has implicated involvement of the neurohormone serotonin (5-hydroxytryptamine, 5-HT) in the pathophysiology of IBDs. The current study investigated whether serum 5-HT is elevated in patients with active ulcerative colitis (UC) or Crohn's disease (CD).
View Article and Find Full Text PDFThe serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD).
View Article and Find Full Text PDFThe serotonin transporter (SERT, SLC6A4) is a Na-dependent transporter that regulates the availability of serotonin (5-HT, 5-hydroxytryptamine), a key neurotransmitter and hormone in the brain and the intestine. The human SERT gene consists of two alternate promoters that drive expression of an identical SERT protein. However, there are different mRNA transcript variants derived from these two promoters that differ in their 5' untranslated region (5'UTR), which is the region of the mRNA upstream from the protein-coding region.
View Article and Find Full Text PDFThe ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is -acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins.
View Article and Find Full Text PDFBackground/aims: Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation.
View Article and Find Full Text PDFThe intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism.
View Article and Find Full Text PDFMicrovillus inclusion disease (MVID) is a rare congenital severe malabsorptive and secretory diarrheal disease characterized by blunted or absent microvilli with accumulation of secretory granules and inclusion bodies in enterocytes. The typical clinical presentation of the disease is severe chronic diarrhea that rapidly leads to dehydration and metabolic acidosis. Despite significant advances in our understanding of the causative factors, to date, no curative therapy for MVID and associated diarrhea exists.
View Article and Find Full Text PDFBackground: Intestinal epithelial apical membrane Cl-/HCO3- exchanger DRA (downregulated in adenoma, SLC26A3) has emerged as an important therapeutic target for diarrhea, emphasizing the potential therapeutic role of agents that upregulate DRA. All-trans retinoic acid (ATRA), a key vitamin A metabolite, was earlier shown by us to stimulate DRA expression in intestinal epithelial cells. However, its role in modulating DRA in gut inflammation has not been investigated.
View Article and Find Full Text PDFAim: P-glycoprotein (Pgp/MDR1) plays a major role in intestinal homeostasis. Decrease in Pgp function and expression has been implicated in the pathogenesis of IBD. However, inhibitory mechanisms involved in the decrease of Pgp in inflammation are not fully understood.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2019
Putative anion transporter 1 (PAT1, SLC26A6), an intestinal epithelial Cl/ exchanger, also plays a key role in oxalate homeostasis via mediating intestinal oxalate secretion. Indeed, Slc26a6-null mice showed defect in intestinal oxalate secretion and high incidence of kidney stones. Recent emergence of PAT-1 as a novel therapeutic target for nephrolithiasis warrants detailed understanding of the mechanisms of PAT-1 regulation in health and disease.
View Article and Find Full Text PDFBile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD).
View Article and Find Full Text PDFIntestinal Niemann-Pick C1 Like 1 (NPC1L1) protein plays a key role in cholesterol absorption. A decrease in NPC1L1 expression has been implicated in lowering plasma cholesterol and mitigating the risk for coronary heart disease. Little is known about the mechanisms responsible for NPC1L1 protein degradation that upon activation may lead to a reduction in NPC1L1 protein levels in intestinal epithelial cells (IECs).
View Article and Find Full Text PDF