Publications by authors named "Ravikumar C R"

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

A nanocomposite of CaO:MgAlO was synthesized through a straightforward and cost-effective sol-gel method. The investigation of the novel CaO:MgAlO nanocomposite encompassed an examination of its morphological and structural alterations, as well as an exploration of its photocatalytic activities and electrochemical characteristics. XRD analysis revealed a nanocomposite size of 24.

View Article and Find Full Text PDF

Doping enhances the optical properties of high-band gap zinc oxide nanoparticles (ZnO NPs), essential for their photocatalytic activity. We used the combustion approach to synthesize cobalt-doped ZnO heterostructure (CDZO). By creating a mid-edge level, it was possible to tune the indirect band gap of the ZnO NPs from 3.

View Article and Find Full Text PDF

In the current world, storing and converting energy without affecting the natural ecosystem are considered a sustainable and efficient green energy source production technology. Especially, using low-cost, environmentally friendly, and high-cycle stability activated carbon (AC) from the water hyacinth () waste material for charge storage application is the current attractive strategy for renewable energy generation. In this study, preparation of AC from water hyacinth using a mixed chemical activation agent followed by activation time was optimized by the I-optimal coordinate exchange design model based on a 3-factor/3-level strategy under nine experimental runs.

View Article and Find Full Text PDF
Article Synopsis
  • This study introduces eco-friendly methods to produce Zn-doped nickel oxide nanoparticles (Zn:NiO NPs) using aloe vera gel extract and glucose as fuel sources.
  • Characterization techniques like PXRD and electron microscopy reveal that the nanoparticles have a specific crystal structure and unique spongy, spherical, and porous features.
  • The research suggests that Zn:NiO NPs show promising electrical properties, making them a viable and cost-effective material for supercapacitor applications in the future.
View Article and Find Full Text PDF

Investigating and synthesizing potent antibacterial NPs using biological methods is highly preferred, and it involves nontoxic, cost-effective, and environmentally friendly chemicals and methods. Antibiotic drug resistance and oxidative stress have become a serious public health issue worldwide. Hence, the key objective of this study was to biologically synthesize and characterize the potent antibacterial CoO@ZnO core-shell nanoparticles for the antibacterial application.

View Article and Find Full Text PDF

The Sampar Coalfield in Northeastern India is a source of plentiful coal reserves, which are burnt for energy production and industrial applications, resulting in the release of pollutants such as sulphur , arsenic, and lead, which are hazardous to the environment and public health. In this work, samples from the Sampar coalfield have been analyzed to understand the origin, distribution, and various forms of sulphur and their ability to detect toxic heavy metals. The total sulphur concentration ranged from 4.

View Article and Find Full Text PDF

A low temperature-assisted and oxalyl dihydrazide fuel-induced combustion synthesized series of uncalcined MgAl O :Eu nanophosphors showed an average crystallite size of ~20 nm, and bandgap energy (E ) of 4.50-5.15 eV, and were validated using density functional theory and found to match closely with the experimental values.

View Article and Find Full Text PDF

Green synthesis of metal oxide nanoparticles (NPs) is a viable alternative methodology because of cost-effective and availability of environmentally friendly templates for desired application, which has attracted the attention of researchers in recent years. In the present study, CoO NPs were synthesized in various volume ratios in the presence of leaf extract as a template. The synthesized CoO NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), surface area electron diffraction (SAED), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

The dysfunctioning of β-cells caused by the unspecific misfolding of the human islet amyloid polypeptide (hIAPP) at the membrane results in type 2 diabetes mellitus. Here, we report for the first time, the early-stage interaction of hIAPP oligomers on the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid membrane using electrochemical parameters. Electrochemical techniques are better than other techniques to detect hIAPP at significantly lower concentrations.

View Article and Find Full Text PDF

Nanostructured NiO and Li-ion doped NiO have been synthesized via a facile microwave technique and simulated using the first principle method. The effects of microwaves on the morphology of the nanostructures have been studied by Field Emission Spectroscopy. X-ray diffraction studies confirm the nanosize of the particles and favoured orientations along the (111), (200) and (220) planes revealing the cubic structure.

View Article and Find Full Text PDF

This work reveals a green combustion route for the synthesis of TiO, FeO and TiO-FeO nanocomposites as photocatalysts for decolorization of Titan Yellow (TY) and Methyl Orange (MO) dyes at room temperature in aqueous solution concentration of 20 ppm under UV-light irradiation. We observed that the TiO-FeO nanocomposite shows superior photocatalytic activity for TY dye compared to pure TiO and FeO. Rate constant (k) values of TiO, FeO and TiO-FeO for TY and MO are 0.

View Article and Find Full Text PDF