Publications by authors named "Ravi Tripathi"

Carbon monoxide has been extensively studied for its various therapeutic activities in cell cultures and animal models. Great efforts have been made to develop noninhalational approaches for easy and controlled CO delivery. Herein, we introduce a novel metal-free CO prodrug approach that releases CO under near-physiological conditions.

View Article and Find Full Text PDF

Nanozymes are a group of nanomaterials that garnered significant attention due to their enzyme-mimicking properties and their catalytic activities comparable to those of natural enzymes. The ability of nanozymes to emulate crucial biological processes which can conquer the drawbacks of natural enzymes, such as their restricted thermostability as well as substrate range. Auriferous (gold) nanozymes possess remarkable enzyme-like properties, such as reductase, peroxidase, superoxide dismutase, oxidase, and catalase.

View Article and Find Full Text PDF

Background: Overtreatment of ventilator-associated pneumonia (VAP) in the intensive care unit is driven by positive respiratory tract cultures in the absence of a clinical picture of pneumonia. We evaluated the potential for diagnostic stewardship at the respiratory culture reporting step.

Methods: In this mixed methods study, we conducted a baseline evaluation of lower respiratory tract (LRT) culture appropriateness and antibiotic prescribing, followed by a nonrandomized intervention in 2 adult intensive care units.

View Article and Find Full Text PDF

Rice false smut, which is caused by the soil-borne fungal pathogen (), is one of the most threatening diseases in most of the rice-growing countries including India that causes 0.5-75% yield loss, low seed germination, and a reduction in seed quality. The assessment of yield loss helps to understand the relevance of disease severity and facilitates the implementation of appropriate management strategies.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras or PROTACs are hetero-bifunctional molecules designed to mediate the disposal of a target protein recruitment of the ubiquitination-proteasome degradation machinery. Because of the chimeric nature of such molecules, their synthesis requires a key step of "assembling" whether in the lab or . Furthermore, targeted PROTACs often are hetero-trifunctional and require a second "assembling" step.

View Article and Find Full Text PDF

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants.

View Article and Find Full Text PDF

Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges.

View Article and Find Full Text PDF

Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group.

View Article and Find Full Text PDF

The progression of any disease and its outcomes depend on the complicated interaction between pathogens, host and environmental factors. Thus, complete knowledge of bacterial toxins involved in pathogenesis is necessary to develop diagnostic methods and alternative therapies, including vaccines. This review summarizes recently employed biomarkers to diagnose the presence of bacteria.

View Article and Find Full Text PDF

Misdiagnosis of bacterial pneumonia increases risk of exposure to inappropriate antibiotics and adverse events. We developed a diagnosis calculator (https://calculator.testingwisely.

View Article and Find Full Text PDF

The global health exchange program between the University Teaching Hospitals (UTH) of Lusaka, Zambia and the University of Maryland, Baltimore (UMB) has been operating since 2015. As trainees and facilitators of this exchange program, we describe our experiences working in Lusaka and Baltimore, and strengths and challenges of the partnership. Since 2015, we have facilitated rotations for 71 UMB trainees, who spent four weeks on the Infectious Disease (ID) team at UTH.

View Article and Find Full Text PDF

Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding.

View Article and Find Full Text PDF

Carbon monoxide (CO), an endogenous signaling molecule, is known to exert a range of pharmacological effects, including anti-inflammation, organ protection, and antimetastasis in various animal models. We have previously shown the ability of organic prodrugs to deliver CO systemically through oral administration. As part of our efforts for the further development of these prodrugs, we are interested in minimizing the potential negative impact of the "carrier" portion of the prodrug.

View Article and Find Full Text PDF

Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule.

View Article and Find Full Text PDF

Uric acid (2,6,8-trihydroxypurine) is a metabolic product of purine, which is one of the important markers of human health. The development of a rapid, facile, highly sensitive, and selective method for uric acid detection is critical for the diagnosis of related diseases and is still a strategic challenge. In this study, we developed a highly sensitive and selective colorimetric assay for the detection of uric acid using biogenic palladium nanoparticles (Pd NPs).

View Article and Find Full Text PDF

Coupling between light and matter strongly depends on the polarization of the electromagnetic field and the nature of excitations in a material. As hybrid perovskites emerge as a promising class of materials for light-based technologies such as LEDs, LASERs, and photodetectors, it is critical to understand how their microstructure changes the intrinsic properties of the photon emission process. While the majority of optical studies have focused on the spectral content, quantum efficiency and lifetimes of emission in various hybrid perovskite thin films and nanostructures, few studies have investigated other properties of the emitted photons such as polarization and emission angle.

View Article and Find Full Text PDF

Van der Waals (vdW) materials have recently attracted significant interest in the context of orientation-dependent linear and nonlinear optical properties. Recently, arsenic trisulfide (AsS) or orpiment is identified as a new vdW layered material having anisotropic vibrational and optomechanical responses due to the reduced in-plane crystal symmetry, but its nonlinear optical response is still not well understood yet. Herein, the anisotropic third-harmonic generation (THG) response of mechanically exfoliated AsS thin flakes is reported.

View Article and Find Full Text PDF

Naturally occurring layered mineral livingstonite is identified as a new type of van der Waals (vdW) heterostructure based 2D material, consisting of two commensurately modulated alternating layers of HgSbS and SbS. The heterostructures of livingstonite crystal are prepared as thin flakes via mechanical exfoliation method. The prepared livingstonite crystals are further investigated in the context of vibrational, linear, and nonlinear optical properties, including anisotropic Raman scattering, wavelength-dependent linear dichroism (LD) transition effect, birefringence, and anisotropic third-harmonic generation (THG).

View Article and Find Full Text PDF

Overexpression of ubiquitin ligase MDM2 causes depletion of the p53 tumour-suppressor and thus leads to cancer progression. In recent years, anthraquinone analogs have received significant attention due to their ability to downregulate MDM2, thereby promoting p53-induced apoptosis. Previously, we have developed potent anthraquinone compounds having the ability to upregulate p53 inhibition of MDM2 in both cell culture and animal models of acute lymphocytic leukaemia.

View Article and Find Full Text PDF

A low-molecular-weight, solid CO surrogate that only requires a low-power LED for activation to release 2 equiv of CO is reported. The surrogate can be universally implemented in various palladium-catalyzed carbonylative transformations. It is also compatible with protocols that employ blue-light to activate conventionally inaccessible substrates such as nonactivated alkyl halides.

View Article and Find Full Text PDF

Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines.

View Article and Find Full Text PDF

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG).

View Article and Find Full Text PDF

The quest to find novel strategies to tackle respiratory illnesses has led to the exploration of the potential therapeutic effects of carbon monoxide (CO) as an endogenous signaling molecule and a cytoprotective agent. Further, several studies have demonstrated the pharmacological efficacy of CO in animal models of respiratory disorders, such as acute lung injury and pulmonary hypertension. Because of the gaseous nature of CO and its affinity for multiple targets, its controlled delivery has been a challenge.

View Article and Find Full Text PDF

Multi-element two-dimensional (2D) materials hold great promise in the context of tailoring the physical and chemical properties of the materials via stoichiometric engineering. However, the rational and controllable synthesis of complex 2D materials remains a challenge. Herein, we demonstrate the preparation of large-area thin quaternary 2D material flakes via mechanical exfoliation from a naturally occurring bulk crystal named gillulyite.

View Article and Find Full Text PDF

Multi-element layered materials enable the use of stoichiometric variation to engineer their optical responses at subwavelength scale. In this regard, naturally occurring van der Waals minerals allow us to harness a wide range of chemical compositions, crystal structures and lattice symmetries for layered materials under atomically thin limit. Recently, one type of naturally occurring sulfide mineral, ternary teallite has attained significant interest in the context of thermoelectric, optoelectronic, and photovoltaic applications, but understanding of light-matter interactions in such ternary teallite crystals is scarcely available.

View Article and Find Full Text PDF