Monocyte chemoattractant protein-1 (MCP-1) directs migration of blood monocytes to inflamed tissues. Despite the central role of chemotaxis in immune responses, the regulation of chemotaxis by signal transduction pathways and their in vivo significance remain to be thoroughly deciphered. In this study, we examined the intracellular location and functions of two recently identified regulators of chemotaxis, Ca(2+)-independent phospholipase (iPLA(2)beta) and cytosolic phospholipase (cPLA(2)alpha), and substantiate their in vivo importance.
View Article and Find Full Text PDFIdentification of novel signal transduction pathways regulating monocyte chemotaxis can indicate unique targets for preventive therapies for treatment of chronic inflammatory diseases. To aid in this endeavor we report conditions for optimal transfection of primary human monocytes coupled with a new model system for assessing their chemotactic activity in vivo. This method can be used as a tool to identify the relevant signal transduction pathways regulating human monocyte chemotaxis to MCP-1 in the complex in vivo environment that were previously identified to regulate chemotaxis in vitro.
View Article and Find Full Text PDFFoodborne transmission of bovine spongiform encephalopathy (BSE) to humans as variant Creutzfeldt-Jakob disease (CJD) has affected over 100 individuals, and probably millions of others have been exposed to BSE-contaminated food substances. Despite these obvious public health concerns, surprisingly little is known about the mechanism by which PrP-scrapie (PrP(Sc)), the most reliable surrogate marker of infection in BSE-contaminated food, crosses the human intestinal epithelial cell barrier. Here we show that digestive enzyme (DE) treatment of sporadic CJD brain homogenate generates a C-terminal fragment similar to the proteinase K-resistant PrP(Sc) core of 27-30 kDa implicated in prion disease transmission and pathogenesis.
View Article and Find Full Text PDFAbnormal transport of C-terminally truncated prion protein (PrP) to the nucleus has been reported in cell models of familial prion disorders associated with a stop codon mutation at residues 145 or 160 of the PrP. In both cases, PrP is translocated to the nucleus in an energy-dependent fashion, implying the presence of cryptic nuclear localization signal(s) in this region of PrP. In this report, we describe the presence of two independent nuclear localization signals (NLS) in the N-terminal domain of PrP that differ in the efficiency of nuclear targeting.
View Article and Find Full Text PDFAlthough familial prion disorders are a direct consequence of mutations in the prion protein gene, the underlying mechanisms leading to neurodegeneration remain unclear. Potential pathogenic mechanisms include abnormal cellular metabolism of the mutant prion protein (PrP(M)), or destabilization of PrP(M) structure inducing a change in its conformation to the pathogenic PrP-scrapie (PrP(Sc)) form. To further clarify these mechanisms, we investigated the biogenesis of mutant PrP V203I and E211Q associated with Creutzfeldt-Jakob disease, and PrP Q212P associated with Gerstmann-Straussler-Scheinker syndrome in neuroblastoma cells.
View Article and Find Full Text PDFFamilial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc.
View Article and Find Full Text PDFBackground: Pigmented villonodular synovitis (PVNS) is a benign neoplasm of large joints. It may follow a locally aggressive course. The cytologic features of this neoplasm have not been characterized fully.
View Article and Find Full Text PDFA familial prion disorder with a proline to leucine substitution at residue 102 of the prion protein (PrP(102L)) is typically associated with protease-resistant PrP fragments (PrP(Sc)) in the brain parenchyma that are infectious to recipient animals. When modeled in transgenic mice, a fatal neurodegenerative disease develops, but, unlike the human counterpart, PrP(Sc) is lacking and transmission to recipient animals is questionable. Alternate mice expressing a single copy of PrP(102L) (mouse PrP(101L)) do not develop spontaneous disease, but show dramatic susceptibility to PrP(Sc) isolates from different species.
View Article and Find Full Text PDFPrion diseases or transmissible spongiform encephalopathies are neurodegenerative disorders that are genetic, sporadic, or infectious. The pathogenetic event common to all prion disorders is a change in conformation of the cellular prion protein (PrPC) to the scrapie isoform (PrPSc), which, unlike PrPC, aggregates easily and is partially resistant to protease digestion. Although PrPSc is believed to be essential for the pathogenesis and transmission of prion disorders, the mechanism by which PrPSc deposits cause neurodegeneration is unclear.
View Article and Find Full Text PDFIn infectious and familial prion disorders, neurodegeneration is often seen without obvious deposits of the scrapie prion protein (PrP(Sc)), the principal cause of neuronal death in prion disorders. In such cases, neurotoxicity must be mediated by alternative pathways of cell death. One such pathway is through a transmembrane form of PrP.
View Article and Find Full Text PDF