Publications by authors named "Ravi S Kasinathan"

Background: In an early-phase study involving patients with advanced non-small-cell lung cancer (NSCLC), the response rate was better with nivolumab plus ipilimumab than with nivolumab monotherapy, particularly among patients with tumors that expressed programmed death ligand 1 (PD-L1). Data are needed to assess the long-term benefit of nivolumab plus ipilimumab in patients with NSCLC.

Methods: In this open-label, phase 3 trial, we randomly assigned patients with stage IV or recurrent NSCLC and a PD-L1 expression level of 1% or more in a 1:1:1 ratio to receive nivolumab plus ipilimumab, nivolumab alone, or chemotherapy.

View Article and Find Full Text PDF

Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes.

View Article and Find Full Text PDF

The co-infection of HIV and helminth parasites, such as Schistosoma spp, has increased in sub-Saharan Africa. Many HIV vaccine candidate studies have been completed or are in ongoing clinical trials, but it is not clear how HIV vaccines might affect the course of schistosome infections. In this study, we immunized S.

View Article and Find Full Text PDF

P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics.

View Article and Find Full Text PDF

Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics.

View Article and Find Full Text PDF

Estimated to affect nearly 300 million people worldwide, schistosomiasis is caused by parasitic flatworms of the genus Schistosoma. The major pathological consequences of chronic schistosomiasis are associated with soluble egg antigens (SEA) secreted from schistosome egg deposits in liver and other organs. The vigorous immune responses induced by egg antigens result in granuloma formation and other pathophysiological symptoms such as hepatosplenomegaly and anemia.

View Article and Find Full Text PDF

Increased cytosolic Ca(2+) concentrations activate Gardos K(+) channels in human erythrocytes with membrane hyperpolarization, efflux of K(+), Cl⁻, and osmotically obliged H₂O resulting in cell shrinkage, a phenomenon referred to as Gardos effect. We tested whether the Gardos effect delays colloid osmotic hemolysis of injured erythrocytes from mice lacking the Ca(2+)-activated K(+) channel K(Ca)3.1.

View Article and Find Full Text PDF

The ATP-binding cassette (ABC) superfamily of proteins comprises several ATP-dependent efflux pumps involved in transport of toxins and xenobiotics from cells. These transporters are essential components of normal physiology, and a subset is associated with development of multidrug resistance. P-glycoprotein (Pgp) and the multidrug resistance-associated proteins (MRPs) represent two classes of these multidrug resistance (MDR) transporters.

View Article and Find Full Text PDF

The course of malaria does not only depend on the virulence of the parasite Plasmodium but also on properties of host erythrocytes. Here, we show that infection of erythrocytes from human sickle cell trait (HbA/S) carriers with ring stages of P. falciparum led to significantly enhanced PGE(2) formation, Ca(2+) permeability, annexin-A7 degradation, phosphatidylserine (PS) exposure at the cell surface, and clearance by macrophages.

View Article and Find Full Text PDF

P-glycoprotein (Pgp) is an ATP-dependent efflux pump involved in transport of xenobiotics from cells that, when overexpressed, can mediate multidrug resistance in mammalian cells. Pgp may be a candidate target for new anthelmintics, as it plays critical roles in normal cell physiology, in removal of drugs from cells, and potentially in the development of drug resistance. Schistosomes are parasitic flatworms that cause schistosomiasis, which affects hundreds of millions of people worldwide.

View Article and Find Full Text PDF

One potential physiological target for new antischistosomals is the parasite's system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding-cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells.

View Article and Find Full Text PDF

The intraerythrocytic development of P. falciparum induces New Permeability Pathways (NPP) in the membrane of the parasitized erythrocyte which provide the parasite with nutrients, adjust the erythrocyte electrolyte composition to the needs of the parasite, and dispose of metabolic waste products and osmolytes. Patch-clamp recordings identified inwardly and outwardly rectifying (OR) anion conductances in the host erythrocyte membrane as electrophysiological correlate of the NPP.

View Article and Find Full Text PDF

To explore the functional significance of cGMP-dependent protein kinase type I (cGKI) in the regulation of erythrocyte survival, gene-targeted mice lacking cGKI were compared with their control littermates. By the age of 10 weeks, cGKI-deficient mice exhibited pronounced anemia and splenomegaly. Compared with control mice, the cGKI mutants had significantly lower red blood cell count, packed cell volume, and hemoglobin concentration.

View Article and Find Full Text PDF

To test for redox regulation of anion channels in erythroid cells, we exposed K562 cells to oxidants and measured changes in transmembrane Cl(-) currents using patch-clamp, and in intracellular Cl(-) content using the Cl(-) selective dye MQAE. Oxidation with tert-butylhydroperoxide or H(2)O(2) produced a plasma membrane anion permeability with a permselectivity of NO(3)(-)>lactate(-)>gluconate(-). The permeability increase was paralleled by insertion of ClC-3 protein into the plasma membrane as evident from immunofluorescence microscopy and surface biotinylation.

View Article and Find Full Text PDF

In human erythrocytes, infection by the malaria parasite Plasmodium falciparum or oxidative stress induces a new organic osmolyte and anion permeability. To examine a role for autocrine purinoceptor signaling during this induction process, erythrocytic purinoceptor expression, and ATP release were determined. Furthermore, using pharmacological and genetic approaches the dependence on purinoceptor signaling of osmolyte permeability and Plasmodium development, both in vitro and in vivo, were assessed.

View Article and Find Full Text PDF

Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes.

View Article and Find Full Text PDF