Publications by authors named "Ravi R Sonani"

Article Synopsis
  • The design of supramolecular hydrogels with aligned domains is key for creating biomimetic materials and enhancements in optoelectronics.
  • Self-assembly of small molecules into long fibers, which can be aligned with external forces, provides a method to achieve these materials.
  • The study explores a 'forging' technique that utilizes dynamic properties of the hydrogel to convert and organize the network structure from random to aligned fibers through a controlled gel-to-sol-to-gel transition.
View Article and Find Full Text PDF

Helices are one of the most frequently encountered symmetries in biological assemblies. Helical symmetry has been exploited in electron microscopic studies as a limited number of filament images, in principle, can provide all the information needed to do a three-dimensional reconstruction of a polymer. Over the past 25 years, three-dimensional reconstructions of helical polymers from cryo-EM images have shifted completely from Fourier-Bessel methods to single-particle approaches.

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It bears a significant global health burden with limited treatment options, thus calling for the development of new and effective drugs. Certain trypanosomal metabolic enzymes have been suggested to be druggable and valid for subsequent inhibition.

View Article and Find Full Text PDF

The flagellotropic bacteriophage χ (Chi) infects bacteria via the flagellar filament. Despite years of study, its structural architecture remains partly characterized. Through cryo-EM, we unveil χ's nearly complete structure, encompassing capsid, neck, tail, and tail tip.

View Article and Find Full Text PDF

Peptide-based biopolymers have gained increasing attention due to their versatile applications. A naphthalene dipeptide (2NapFF) can form chirality-dependent tubular micelles, leading to supramolecular gels. The precise molecular arrangement within these micelles and the mechanism governing gelation have remained enigmatic.

View Article and Find Full Text PDF

A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness.

View Article and Find Full Text PDF

Peptide self-assembly is a powerful tool to prepare functional materials at the nanoscale. Often, the resulting materials have high aspect-ratio, with intermolecular β-sheet formation underlying 1D fibrillar structures. Inspired by dynamic structures in nature, peptide self-assembly is increasingly moving toward stimuli-responsive designs wherein assembled structures are formed, altered, or dissipated in response to a specific cue.

View Article and Find Full Text PDF
Article Synopsis
  • * Bacterial tad (tight adhesion) T4P are unique because they are shorter, lack a C-terminal domain, and don’t have a specific proline (Pro22) that is common in other bacterial T4P.
  • * Cryo-EM studies reveal that bacterial tad pili have continuous helical subunits similar to archaeal T4P, suggesting an evolutionary link between the two, and emphasizing the significance of Pro22 in the structuring of bacterial T4P.
View Article and Find Full Text PDF

Large gaps exist in our understanding of how bacteriophages, the most abundant biological entities on Earth, assemble and function. The structure of the "neck" region, where the DNA-filled capsid is connected to the host-recognizing tail remains poorly understood. We describe cryo-EM structures of the neck, the neck-capsid and neck-tail junctions, and capsid of the Agrobacterium phage Milano.

View Article and Find Full Text PDF

Flagellar motility has independently arisen three times during evolution: in bacteria, archaea, and eukaryotes. In prokaryotes, the supercoiled flagellar filaments are composed largely of a single protein, bacterial or archaeal flagellin, although these two proteins are not homologous, while in eukaryotes, the flagellum contains hundreds of proteins. Archaeal flagellin and archaeal type IV pilin are homologous, but how archaeal flagellar filaments (AFFs) and archaeal type IV pili (AT4Ps) diverged is not understood, in part, due to the paucity of structures for AFFs and AT4Ps.

View Article and Find Full Text PDF

Unlabelled: Phycobiliproteins is a family of chromophore-containing proteins having light-harvesting and antioxidant capacity. The phycocyanin (PC) is a brilliant blue coloured phycobiliprotein, found in rod structure of phycobilisome and has been widely studied for their therapeutic and fluorescent properties. In the present study, the hexameric assembly structure of phycocyanin (Syn-PC) from Sp.

View Article and Find Full Text PDF

The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive.

View Article and Find Full Text PDF

Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed.

View Article and Find Full Text PDF

Phycoerythrin (PE) is green light-absorbing pigment-protein that assists in efficient light harvesting in cyanobacteria and red-algae. PE in cyanobacteria stays less studied so far as compared to that in red algae. In this study, PE from marine cyanobacteria sp.

View Article and Find Full Text PDF

Peroxisomal acyl-CoA oxidase 1a (ACOX1a) catalyzes the first and rate-limiting step of fatty acid oxidation, the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The dysfunction of human ACOX1a (hACOX1a) leads to deterioration of the nervous system manifesting in myeloneuropathy, hypotonia and convulsions. Crystal structures of hACOX1a in apo- and cofactor (FAD)-bound forms were solved at 2.

View Article and Find Full Text PDF

Glycosomal malate dehydrogenase from Trypanosoma cruzi (tcgMDH) catalyzes the oxidation/reduction of malate/oxaloacetate, a crucial step of the glycolytic process occurring in the glycosome of the human parasite. Inhibition of tcgMDH is considered a druggable trait for the development of trypanocidal drugs. Sequence comparison of MDHs from different organisms revealed a distinct insertion of a prolin rich 9-mer (62-KLPPVPRDP-70) in tcgMDH as compared to other eukaryotic MDHs.

View Article and Find Full Text PDF

The crystal structure of phycocyanin (pr-PC) isolated from Phormidium rubidum A09DM (P. rubidum) is described at a resolution of 1.17 Å.

View Article and Find Full Text PDF

The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and 9 in β-subunit).

View Article and Find Full Text PDF

In the original publication, under the subtitle Recovery: fluorescence recovery protein (FRP), paragraph 4 the text section enclosed in quotation marks does not occur in one of the original publications cited (Sluchanko et al. 2017a, b).

View Article and Find Full Text PDF

To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized.

View Article and Find Full Text PDF

Cyanobacteria exhibit a novel form of non-photochemical quenching (NPQ) at the level of the phycobilisome. NPQ is a process that protects photosystem II (PSII) from possible highlight-induced photo-damage. Although significant advancement has been made in understanding the NPQ, there are still some missing details.

View Article and Find Full Text PDF

In the present study, blue light absorbing pigment protein phycoerythrin (PE) is purified up to molecular grade purity from marine Halomicronema sp. R31DM. The purification method is based on the use of non-ionic detergent Triton-X 100 in ammonium sulphate precipitation.

View Article and Find Full Text PDF

C-Phycoerythrin (PE) from Phormidium sp. A09DM has been crystallized using different conditions and its structure determined to atomic resolution (1.14 Å).

View Article and Find Full Text PDF

The cyanobacterium Synechococcus sp. R42DM, isolated from an industrially polluted site Vatva, Gujarat, India was recognized to produce phycocyanin (PC) as major phycobiliprotein. In present study, the combinatorial approach of chemical and physical methods i.

View Article and Find Full Text PDF

Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores.

View Article and Find Full Text PDF