Publications by authors named "Ravi Lokesh"

The research article details the synthesis of chalcone-chromone-based scaffolds via multicomponent reactions. These compounds were characterized using conventional spectroscopic methods, including NMR (H and C), FT-IR, and HR-MS. Among the synthesized scaffolds, AZBNPy stood out, exhibiting exceptional DNA and protein targeting capabilities with superior binding parameters.

View Article and Find Full Text PDF

Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes.

View Article and Find Full Text PDF

Context: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors.

View Article and Find Full Text PDF

Multi-Target Inhibitors are the upcoming frontrunners of the antibiotic world as they provide significant advantage over drug resistance development. Antibacterial drug discovery research, requires more robust and innovative approaches such as multi-target inhibiting drugs, which over comes the innate hurdles in the field of antibiotics. In this current study, a curated set of 5,112 phytochemical molecules were virtually screened for its multi-target inhibition potential against 7 antibacterial protein drug-targets.

View Article and Find Full Text PDF

Multi-target inhibitors are currently trending in the pharmaceutical research, as they possess increased efficacy and reduced toxicity. In this study multi-target inhibitors for breast cancer are explored from a curated list of natural products, i.e.

View Article and Find Full Text PDF

The study aims to identify and validate a potential α-Amylase inhibitor from the leaf extract of the Parthenium hysterophorus. Molecular docking and dynamics analyses were performed to test the anti-diabetic efficacy of the compound by focusing on α-Amylase inhibition. The molecular docking study using AutoDock Vina (PyRx) and SeeSAR tools identified β-Sitosterol as an effective α-Amylase inhibitory compound.

View Article and Find Full Text PDF

Poly- and perfluorinated alkyl substances (PFAS) are a group of persistent organic pollutants causing serious global concern. Plants can accumulate PFAS but their effect on plant physiology, especially at the molecular level is not very well understood. Hence, we used hydroponically-grown maize plants treated with a combination of eleven different PFAS (each at 100 μg L) to investigate their bioaccumulation and effects on the growth, physiology and their impact on the root proteome.

View Article and Find Full Text PDF

Background: The Transmembrane Serine Protease 2 (TMPRSS2) of human cell plays a significant role in proteolytic cleavage of SARS-Cov-2 coronavirus spike protein and subsequent priming to the receptor ACE2. Approaching TMPRSS2 as a therapeutic target for the inhibition of SARS-Cov-2 infection is highly promising. Hence, in the present study, we docked the binding efficacy of ten naturally available phyto compounds with known anti-viral potential with TMPRSS2.

View Article and Find Full Text PDF

This study investigates the anticancer cytotoxic mechanism of action of benzoyloxy-ethyl-carbamic acid (BECA) produced by Streptomyces globosus VITLGK011. Flow cytometry analysis confirmed that BECA (at IC : 3.12 µg/ml) treatment for 24 h induced apoptosis in 60% of cells.

View Article and Find Full Text PDF

New morpholine derived Schiff base ligands (HL and HL) and their Cu(II) complexes [Cu(L)] (1) and [Cu(L)] (2) have been synthesized and characterized by H NMR, IR, UV-Vis, EPR studies and cyclic voltammetric analyses. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff base ligands HLand HL. The ground state electronic structures of Cu(II) complexes 1 and 2 have been investigated by DFT/B3LYP theoretical analysis with 6-31G (d,p) and LANL2DZ basis set.

View Article and Find Full Text PDF

The impact of green-fabricated gold nanoparticles on plant cells and non-target aquatic species is scarcely studied. In this research, we reported an environment friendly technique for the synthesis of gold nanoparticles (Au NPs) using the Sphaeranthus indicus leaf extract. The formation of the metal NPs was characterized by UV-Visible and FT-IR spectroscopy, XRD, SEM and TEM analyses.

View Article and Find Full Text PDF

Effective interaction of natural alkaloid Luotonin A (L) and its affixed acceptor molecules 1 and 2 with donor molecule as Bovine serum albumin (BSA) at various pH (4.0, 7.4 and 10.

View Article and Find Full Text PDF

Aspergillosis is one of the infectious fungal diseases affecting mainly the immunocompromised patients. The scarcity of the antifungal targets has identified the importance of N-myristoyl transferase (NMT) in the regulation of fungal pathway. The dihydroquinazolinone molecules were designed on the basis of fragments responsible for binding with the target enzyme.

View Article and Find Full Text PDF