Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted by varying lipid compositions, drug initial loading and applied homogenization pressure.
View Article and Find Full Text PDFSolid lipid nanoparticles (SLNs) loaded with ibuprofen (IBU) were prepared by solvent-free high-pressure homogenization (HPH). The produced SLNs consisted of stearic acid, triluarin or tripalmitin as lipid matrixes and various stabilizers. The produced empty and IBU-loaded SLNs were characterized for particle size stability over 8 months.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2010
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance.
View Article and Find Full Text PDFPurpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles.
Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO(2) phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size.
A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose.
View Article and Find Full Text PDF