Publications by authors named "Ravi Kumar Kurup"

The case report of a family with coexistence of hypotension, recurrent respiratory infection, motor tics, obsessive-compulsive disorder (OCD), major depressive disorder, early onset osteoporosis, low body mass index, bulimia nervosa, and healthy aging with longevity is described. The family members had hyposexual behavior and less tendency toward spirituality. They did not have insomnia, but they did display tendency toward increased somnolence.

View Article and Find Full Text PDF

Unlabelled: The isoprenoid pathway produces three key metabolites: endogenous digoxin (regulator of neurotransmitter uptake), dolichol, and ubiquinone (free radical scavenger). Since a mitochondrial dysfunction has been described in Reye's syndrome, it was considered pertinent to assess the pathway in this disease. Since endogenous digoxin can regulate neurotransmitter transport, the pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in its pathogenesis.

View Article and Find Full Text PDF

The isoprenoid pathway related cascade was assessed in trisomy 21. Membrane Na+, K(+)-ATPase activity, serum magnesium, and ubiquinone were decreased while hydroxy methyl glutaryl CoA (HMG) coenzyme A (CoA) reductase activity, serum digoxin, and dolichol levels were increased in trisomy 21. There were increased levels of tryptophan catabolites--nicotine, strychnine, quinolinic acid, and serotonin--and decreased levels of tyrosine catabolites--dopamine, noradrenaline, and morphine in trisomy 21.

View Article and Find Full Text PDF

The role of the isoprenoid pathway in vascular thrombosis, especially mesenteric artery occlusion and its relation to hemispheric dominance, was assessed in this study. The following parameters were measured in patients with mesenteric artery occlusion and individuals with right hemispheric, left hemispheric, and bihemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition. In patients with mesenteric artery occlusion there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, low ubiquinone, and elevated free radical levels.

View Article and Find Full Text PDF

This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol, and ubiquinone in multiple myeloma. The isoprenoid pathway and digoxin status were also studied for comparison in individuals of differing hemispheric dominance to find out the rote of cerebral dominance in the genesis of multiple myeloma and neoplasms. The following parameters were assessed: isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition, and free radical metabolism--in multiple myeloma, as well as in individuals of differing hemispheric dominance.

View Article and Find Full Text PDF

Psychiatric abnormalities have been described in primary neurological disorders like multiple sclerosis, primary generalized epilepsy, Parkinson's disease, subacute sclerosing panencephalitis (SSPE), central nervous system glioma, and syndrome X with vascular dementia. It was therefore considered pertinent to compare monoamine neurotransmitter pattern in schizophrenia with those in the disorders described above. The end result of neurotransmission is changes in membrane Na(+)-K+ ATPase activity.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with systemic sarcoidosis. All l5 patients with sarcoidosis were right-handed/left hemispheric dominant by the dichotic listening test.

View Article and Find Full Text PDF

The membrane composition and the isoprenoid pathway metabolites important in maintaining cell membrane integrity was studied in neurological and psychiatric disorders. The results indicate alteration in cholesterol:phospholipid ratio of the RBC membrane which is increased in glioma, schizophrenia, and bipolar mood disorder (MDP); decreased in multiple sclerosis and Parkinson's disease; and not significantly altered in epilepsy. The concentration of total glycosaminoglycans (GAG), hexose, and fucose decreased in the RBC membrane and increased in the serum.

View Article and Find Full Text PDF

The isoprenoid pathway including endogenous digoxin was assessed in systemic lupus erythematosis (SLE). All the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. This was also studied for comparison in patients with right hemispheric and left hemispheric dominance.

View Article and Find Full Text PDF

The isoprenoid pathway and its metabolites--digoxin, dolichol, and ubiquinone--were assessed in autism. The isoprenoid pathway and digoxin status was also studied for comparison in individuals of differing hemispheric dominance to determine the role of cerebral dominance in the genesis of autism. There was an upregulation of the isoprenoid pathway as evidenced by elevated HMG CoA reductase activity in autism.

View Article and Find Full Text PDF

This study assessed the changes in digoxin and some other metabolites of the isoprenoid pathway in metabolic syndrome X presenting with multiple lacunar state. The isoprenoid pathway and digoxin status was also studied for comparison in individuals of differing hemispheric dominance to find out the role of cerebral dominance in the genesis of syndrome X. There was an increase in plasma HMG CoA reductase activity with a consequent increase in serum digoxin, which caused a reduction in RBC membrane Na(+)-K+ ATPase activity.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin-like factor (EDLF) (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), ubiquinone (free radical scavenger), and dolichol (regulator of glycoconjugate metabolism). The pathway was assessed in peptic ulcer and acid peptic disease and its relation to hemispheric dominance studied. The activity of HMG CoA reductase, serum levels of EDLF, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in acid peptic disease, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals.

View Article and Find Full Text PDF

Background And Aims: The isoprenoid pathway was assessed in 15 patients with chronic fatigue syndrome (CFS). The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has any correlation with these disease states.

Methods: The isoprenoid metabolites - digoxin, dolichol and ubiquinone - RBC membrane Na+-K+ ATPase activity, serum magnesium and tyrosine/tryptophan catabolic patterns were assessed.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--digoxin (membrane Na+-K+ ATPase inhibitor, regulator of neurotransmitter transport, and an immunomodulatory agent), dolichol (a regulator of N-glycosylation of proteins), and ubiquinone (a free radical scavenger). The pathway was assessed in acute rheumatic fever patients with recurrent streptococcal infections, and who were also studied for differences in right and left hemispheric dominance. The isoprenoid pathway was downregulated with decreased digoxin synthesis in these patients and in those with left hemispheric chemical dominance.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator, and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins), and ubiquinone (free radical scavenger). This was assessed in patients with chronic bronchitis emphysema. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find the role of hemispheric dominance in the pathogenesis of chronic bronchitis emphysema.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. It was considered pertinent to assess the pathway in inflammatory bowel disease (ulcerative colitis and regional ileitis). Since endogenous digoxin can regulate neurotransmitter transport, the pathway and the related cascade were also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--digoxin (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), dolichol (regulator of N-glycosylation of proteins), and ubiquinone (free radical scavenger). The isoprenoid pathway was assessed in patients with bronchial asthma. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of bronchial asthma.

View Article and Find Full Text PDF

The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance.

View Article and Find Full Text PDF

The isoprenoid pathway produces three key metabolites--endogenous digoxin (modulate tryptophan/tyrosine transport), dolichol (important in N -glycosylation of proteins), and ubiquinone (free radical scavenger). It was considered pertinent to assess the pathway in alcoholic addiction, alcoholic cirrhosis, and acquired hepatocerebral degeneration. Since endogenous digoxin can regulate neurotransmitter transport, the pathway was also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis.

View Article and Find Full Text PDF

The study assessed the biochemical differences between right hemispheric dominant and left hemispheric dominant individuals. The HMG CoA reductase activity, isoprenoid metabolites--serum digoxin--serum magnesium, and RBC membrane Na+-K+ ATPase activity were also studied. The results showed that right hemispheric chemically dominant individuals had increased (i) HMG CoA reductase activity, elevated digoxin levels, (ii) reduced RBC membrane Na+-K+ ATPase activity and serum magnesium levels.

View Article and Find Full Text PDF

The isoprenoid pathway produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with differing family bonding patterns. The family bonding patterns were assessed by the FACES scale--family adaptability and cohesiveness evaluation scale.

View Article and Find Full Text PDF

The isoprenoid pathway produces endogenous digoxin which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with differing family bonding patterns. The patterns were compared in those with right hemispheric and left hemispheric dominance.

View Article and Find Full Text PDF

This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol and ubiquinone in multiple myeloma. The following parameters were assessed: isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition and free radical metabolism. There was elevation in plasma HMG CoA reductase activity, serum digoxin and dolichol and a reduction in RBC membrane Na+ - K+ ATPase activity, and serum ubiquinone levels.

View Article and Find Full Text PDF

The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance.

View Article and Find Full Text PDF