Publications by authors named "Ravi K Biroju"

Two-dimensional (2D) van der Waals heterostructures combine the distinct properties of individual 2D materials, resulting in metamaterials, ideal for emergent electronic, optoelectronic, and spintronic phenomena. A significant challenge in harnessing these properties for future hybrid circuits is their large-scale realization and integration into graphene interconnects. In this work, we demonstrate the direct growth of molybdenum disulfide (MoS) crystals on patterned graphene channels.

View Article and Find Full Text PDF

Two-dimensional-zero-dimensional plasmonic hybrids involving defective graphene and transition metals (DGR-TM) have drawn significant interest due to their near-field plasmonic effects in the wide range of the UV-vis-NIR spectrum. In the present work, we carried out extensive investigations on resonance Raman spectroscopy (RRS) and localized surface plasmon resonance (LSPR) from the various DGR-TM hybrids (Au, Ag, and Cu) using micro-Raman, spatial Raman mapping analysis, high-resolution transmission electron microscopy (HRTEM), and LSPR absorption measurements on defective CVD graphene layers. Further, electric field (E) mappings of samples were calculated using the finite domain time difference (FDTD) method to support the experimental findings.

View Article and Find Full Text PDF

A reliable method to prepare a surface-enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect-engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single-layer graphene. This defect-engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface.

View Article and Find Full Text PDF

New layered solids by the combinatorial stacking of different atomic layers are emanating as novel candidates for energy efficient devices. Here, sequentially stacked single layer graphene-molybdenum disulfide (MoS) van der Waals (vdW) solids are demonstrated for their efficacy in the catalysis of hydrogen evolution reaction (HER), and importance of their stacking order in tuning the photo-electrocatalytic (PEC) efficiency is unraveled. Single layer graphene and a few layered MoS stacked vdW solids based transparent flexible electrodes were prepared, and a particular stacking sequence where top-graphene: bottom-MoS/polydimethylsiloxane (PDMS) geometry (MSGR) exhibited the lowest onset and over potentials and a very high exchange current density (j  ∼ 245 ± 1 μA cm) in acidic HER in comparison to the individual layers and other stacked configuration (MoS on top of graphene on PDMS, GRMS).

View Article and Find Full Text PDF

We demonstrate the graphene assisted catalyst free growth of ZnO nanowires (NWs) on chemical vapor deposited (CVD) and chemically processed graphene buffer layers at a relatively low growth temperature (580 °C) in the presence and absence of ZnO seed layers. In the case of CVD graphene covered with rapid thermal annealed ZnO buffer layer, the growth of vertically aligned ZnO NWs takes place, while the direct growth on CVD graphene, chemically derived graphene (graphene oxide and graphene quantum dots) without ZnO seed layer resulted in randomly oriented sparse ZnO NWs. Growth mechanism was studied from high resolution transmission electron microscopy and Raman spectroscopy of the hybrid structure.

View Article and Find Full Text PDF

We demonstrate graphene-assisted controlled fabrication of various ZnO 1D nanostructures on the SiO2/graphene substrate at a low temperature (540 °C) and elucidate the growth mechanism. Monolayer and a few layer graphene prepared by chemical vapor deposition (CVD) and subsequently coated with a thin Au layer followed by rapid thermal annealing is shown to result in highly aligned wurtzite ZnO nanorods (NRs) with clear hexagonal facets. On the other hand, direct growth on CVD graphene without a Au catalyst layer resulted in a randomly oriented growth of dense ZnO nanoribbons (NRBs).

View Article and Find Full Text PDF