Publications by authors named "Ravi K Arvapalli"

The Fischer 344/NNiaHSD × Brown Norway/BiNia F1 (F344xBN) rat model exhibits an increased life span and fewer age-associated pathologies compared to commonly used Fischer 344 (F344). How aging may affect cardiac structure and function in these animals, has to our knowledge, not been investigated. Echocardiography was performed on female F344xBN rats at 6, 26, and 30 months of age using a Phillips 5500 Echocardiography system.

View Article and Find Full Text PDF

Oxidative-nitrosative stress may play a role in age-associated cardiovascular disease as implied by recent studies.However, limited research has been conducted using aged female rodent models. In this study, we examined hearts obtained from 6-, 26-, and 30-month old female Fischer 344/Nnia x Brown Norway/BiNia (F344xBN) rats in order to examine how aging affects levels of cardiac oxidative-nitrosative stress and apoptosis.

View Article and Find Full Text PDF

Iron-induced cardiovascular disease is the leading cause of death in iron-overloaded patients. Deferasirox is a novel tridentate oral chelator that exhibits a half-life suitable for once-daily dosing; however, little is known regarding the effectiveness of this agent in preventing iron-induced cardiovascular disease. Adult male Mongolian gerbils were randomly divided into 3 groups: control, iron overload, and iron overload followed by deferasirox treatment.

View Article and Find Full Text PDF

Excess cardiac iron levels are associated with cardiac damage and can result in increased morbidity and mortality. Here, we hypothesize that elevations in tissue iron can activate caspase-dependent signaling, which leads to increased cardiac apoptosis and fibrosis, and that these alterations can be attenuated by iron chelation. Using an iron-overloaded gerbil model, we show that increased cardiac iron is associated with reduced activation of Akt (Ser473 and Thr308), diminished phosphorylation of the proapoptotic regulator Bad (Ser136), and an increased Bax/Bcl-2 ratio.

View Article and Find Full Text PDF

Background: Age-related muscle atrophy is characterized by increased oxidative stress, diminished Akt enzymatic function, and reduced phosphorylation of the mammalian target of rapamycin (mTOR), which can be attenuated by chronic acetaminophen ingestion. Here we hypothesize that age-related impairments in Akt/mTOR function are associated with reduced protein translational signaling, and that these changes, if present, can be attenuated by acetaminophen treatment.

Results: Compared to 6- and 27-month old animals, the expression of the mTOR-complex proteins raptor and GβL and the phosphorylation of tuberin/TSC2 (Thr1462) were reduced in the soleus muscles of very aged rats (33 months old).

View Article and Find Full Text PDF

It is thought that aging in rats and humans is associated with increases in iron accumulation and cell apoptosis. Here, we examine the relationship between cardiac iron levels and apoptosis in aged F344XBN rats that had been treated with an oral iron chelator (Deferasirox; 100 mg/kg body weight) on alternate days for 6 months. Compared to adult animals (6 month), cardiac iron (+72%), liver iron (+87%), ferritin light chain (+59%), divalent metal transporter-1 (+56%) and the number of TdT-mediated dUTP nick end labeling (TUNEL) positive cells (4.

View Article and Find Full Text PDF

Sarcopenia is the loss of muscle mass and strength which occurs with aging. Whether the molecular basis of sarcopenia differs with muscle type and across sex is not well understood. Here we examine how aging affects the regulation of protein kinase B (Akt), the mammalian target of rapamycin (mTOR), AMP activated kinase (AMPK), p70 ribosomal S6 kinase (p70s6k), S6 ribosomal protein (rps6) and calcineurin (CaN) in the slow soleus and fast extensor digitorum longus (EDL) muscles of 6- (adult), 30- (aged), and 36-month (very aged) male and 6- (adult), 26- (aged), and 30-month (very aged) female Fischer 344xBrown Norway (F344BN) rats.

View Article and Find Full Text PDF

Background: Aged skeletal muscle is characterized by an increased incidence of metabolic and functional disorders, which if allowed to proceed unchecked can lead to increased morbidity and mortality. The mechanism(s) underlying the development of these disorders in aging skeletal muscle are not well understood. Protein kinase B (Akt/PKB) is an important regulator of cellular metabolism and survival, but it is unclear if aged muscle exhibits alterations in Akt function.

View Article and Find Full Text PDF