Predicting the solution viscosity of monoclonal antibody (mAb) drug products remains as one of the main challenges in antibody drug design, manufacturing, and delivery. In this work, the concentration-dependent solution viscosity of 27 FDA-approved mAbs was measured at pH 6.0 in 10 mM histidine-HCl.
View Article and Find Full Text PDFSeveral antibody-drug conjugates (ADC) showing strong clinical responses in solid tumors target high expression antigens (HER2, TROP2, Nectin-4, and folate receptor alpha/FRα). Highly expressed tumor antigens often have significant low-level expression in normal tissues, resulting in the potential for target-mediated drug disposition (TMDD) and increased clearance. However, ADCs often do not cross-react with normal tissue in animal models used to test efficacy (typically mice), and the impact of ADC binding to normal tissue antigens on tumor response remains unclear.
View Article and Find Full Text PDFAntibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.
View Article and Find Full Text PDFDNA-targeting indolinobenzodiazepine dimer (IGN) payloads are used in several clinical-stage antibody-drug conjugates. IGN drugs alkylate DNA through the single imine moiety present in the dimer in contrast to the pyrrolobenzodiazepine dimer drugs, such as talirine and tesirine, which contain two imine moieties per dimer and cross-link DNA. This study explored the mechanism of binding of IGN to DNA in cells and to synthetic duplex and hairpin oligonucleotides.
View Article and Find Full Text PDFA new type of antibody-drug conjugate (ADC) has been prepared that contains a sulfur-bearing maytansinoid attached to an antibody via a highly stable tripeptide linker. Once internalized by cells, proteases in catabolic vesicles cleave the peptide of the ADC's linker causing self-immolation that releases a thiol-bearing metabolite, which is then -methylated. Conjugates were prepared with peptide linkers containing only alanyl residues, which were all l isomers or had a single d residue in one of the three positions.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) that incorporate the exatecan derivative DXd in their payload are showing promising clinical results in solid tumor indications. The payload has an F-ring that also contains a second chiral center, both of which complicate its synthesis and derivatization. Here we report on new camptothecin-ADCs that do not have an F-ring in their payloads yet behave similarly to DXd-bearing conjugates and .
View Article and Find Full Text PDFAlthough peptide linkers are used in multiple clinical-stage ADCs, there are only few reports on optimizing peptide linkers for efficient lysosomal proteolysis and for stability in circulation. We screened multiple dipeptide linkers for efficiency of proteolysis and compared them to the dipeptide linkers currently being evaluated in the clinic: Val-Cit, Val-Ala, and Ala-Ala. Lead dipeptide linkers selected from the initial screen were incorporated into ADCs with indolinobenzodiazepine dimer (IGN) payloads to evaluate cellular processing, cytotoxic activity, plasma stability, and efficacy.
View Article and Find Full Text PDFIndolinobenzodiazepine DNA alkylators (IGNs) are the cytotoxic payloads in antibody-drug conjugates (ADCs) currently undergoing Phase I clinical evaluation (IMGN779, IMGN632, and TAK164). These ADCs possess linkers that have been incorporated into a central substituted phenyl spacer. Here, we present an alternative strategy for the IGNs, linking through a carbamate at the readily available N-10 amine present in the monoimine containing dimer.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) that incorporate potent indolinobenzodiazepine DNA alkylators as the payload component are currently undergoing clinical evaluation. In one ADC design, the payload molecules are linked to the antibody through a peptidase-labile l-Ala-l-Ala linker. In order to determine the role of amino acid stereochemistry on antitumor activity and tolerability, we incorporated l- and d-alanyl groups in the dipeptide, synthesized all four diastereomers, and prepared and tested the corresponding ADCs.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) incorporating potent indolinobenzodiazepine (IGN) DNA alkylators as the cytotoxic payload are currently undergoing clinical evaluation. The optimized design of these payloads consists of an unsymmetrical dimer possessing both an imine and an amine effectively eliminating DNA crosslinking and demonstrating improved tolerability in mice. Here we present an alternate approach to generating DNA alkylating ADCs by linking the IGN monomer with a biaryl system which has a high DNA binding affinity to potentially enhance tolerability.
View Article and Find Full Text PDFBackground: We hypothesize that if both energy expenditure and oxygenation are optimized (EEOO) toward ventilator tolerance, this would provide patients with the best condition to be liberated from the ventilator. We defined ventilator tolerance as having a respiratory quotient value between 0.7 and 1.
View Article and Find Full Text PDFThe outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease.
View Article and Find Full Text PDFTumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species).
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) represent an emerging new paradigm in cancer therapy. The approval of two ADCs has spurred considerable interest in this area of research, and over 55 ADCs are currently in clinical testing. In order to improve the clinical success rate of ADC therapy, all three components of the ADC: the antibody, linker, and payload have to be optimized.
View Article and Find Full Text PDFThe promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives.
View Article and Find Full Text PDFA triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody.
View Article and Find Full Text PDFAntibody anilino maytansinoid conjugates (AaMCs) have been prepared in which a maytansinoid bearing an aniline group was linked through the aniline amine to a dipeptide, which in turn was covalently attached to a desired monoclonal antibody. Several such conjugates were prepared utilizing different dipeptides in the linkage including Gly-Gly, l-Val-l-Cit, and all four stereoisomers of the Ala-Ala dipeptide. The properties of AaMCs could be altered by the choice of dipeptide in the linker.
View Article and Find Full Text PDFSeveral antibody-maytansinoid conjugates (AMCs) are in clinical trials for the treatment of various cancers. Each of these conjugates can be metabolized by tumor cells to give cytotoxic maytansinoid metabolites that can kill targeted cells. In preclinical studies in mice, the cytotoxic metabolites initially formed in vivo are further processed in the mouse liver to give several oxidized metabolic species.
View Article and Find Full Text PDFInterleukin-1 (IL-1) cytokines such as IL-1α, IL-1β, and IL-1Ra contribute to immune regulation and inflammatory processes by exerting a wide range of cellular responses, including expression of cytokines and chemokines, matrix metalloproteinases, and nitric oxide synthetase. IL-1α and IL-1β bind to IL-1R1 complexed to the IL-1 receptor accessory protein and induce similar physiological effects. Preclinical and clinical studies provide significant evidence for the role of IL-1 in the pathogenesis of osteoarthritis (OA), including cartilage degradation, bone sclerosis, and synovial proliferation.
View Article and Find Full Text PDFPurpose: Many antibody-drug conjugates (ADCs) become active only after antigen-mediated internalization and release of the cytotoxic agent via antibody degradation. Quantifying these processes can provide critical information on the suitability of a particular receptor target or antibody for ADC therapy by providing insight into the amount of cytotoxic agent released. We describe a simple and inexpensive radiolabel assay to monitor this process in cultured cancer cells.
View Article and Find Full Text PDFAdo-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that combines the antitumor properties of the humanized anti-human epidermal growth factor receptor 2 (HER2) antibody, trastuzumab, with the maytansinoid, DM1, a potent microtubule-disrupting agent, joined by a stable linker. Upon binding to HER2, the conjugate is internalized via receptor-mediated endocytosis, and an active derivative of DM1 is subsequently released by proteolytic degradation of the antibody moiety within the lysosome. Initial clinical evaluation led to a phase III trial in advanced HER2-positive breast cancer patients who had relapsed after prior treatment with trastuzumab and a taxane, which showed that T-DM1 significantly prolonged progression-free and overall survival with less toxicity than lapatinib plus capecitabine.
View Article and Find Full Text PDFTraditional cancer chemotherapy is often accompanied by systemic toxicity to the patient. Monoclonal antibodies against antigens on cancer cells offer an alternative tumor-selective treatment approach. However, most monoclonal antibodies are not sufficiently potent to be therapeutically active on their own.
View Article and Find Full Text PDFIn this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients.
View Article and Find Full Text PDF