Publications by authors named "Raven Kirschenman"

Background: Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A (TxA) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown.

View Article and Find Full Text PDF

A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age.

View Article and Find Full Text PDF

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear.

View Article and Find Full Text PDF

We aimed to evaluate fetal and placental oxygen saturation (sO2) in anemic and non-anemic pregnant rats throughout gestation using photoacoustic imaging (PAI). Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and during pregnancy. On gestational days 13, 18, and 21, PAI was coupled with high resolution ultrasound to measure oxygenation of the fetus, whole placenta, mesometrial triangle, as well as the maternal and fetal faces of the placenta.

View Article and Find Full Text PDF

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ).

View Article and Find Full Text PDF

Prenatal hypoxia is associated with enhanced susceptibility to cardiac ischemia-reperfusion (I/R) injury in adult offspring, however, the mechanisms remain to be fully investigated. Endothelin-1 (ET-1) is a vasoconstrictor that acts via endothelin A (ET) and endothelin B (ET) receptors and is essential in maintaining cardiovascular (CV) function. Prenatal hypoxia alters the ET-1 system in adult offspring possibly contributing to I/R susceptibility.

View Article and Find Full Text PDF

Advanced maternal age (≥35 years) is associated with an increased risk of pregnancy complications such as fetal growth restriction and preeclampsia. We previously demonstrated poor pregnancy outcomes (reduced fetal body weight), altered vascular function, and increased expression of endoplasmic reticulum (ER) stress markers (phospho-eIF2α and CHOP) in mesenteric arteries from a rat model of advanced maternal age. Further, treatment of aged dams during pregnancy with an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA) increased fetal body weight (both male and female), tended to improve uterine artery function, and reduced expression of phospho-eIF2α and CHOP in systemic arteries.

View Article and Find Full Text PDF

Prenatal hypoxia predisposes the offspring to the development of cardiovascular (CV) dysfunction in adult life. Using a rat model, we assessed the effect of prenatal hypoxia on vasoconstrictive and vasodilative mechanisms in left anterior descending coronary arteries of 4- and 9.5-month-old offspring.

View Article and Find Full Text PDF

Background: Gestational dyslipidemia is associated with pregnancy complications including preeclampsia. However, whether gestational dyslipidemia leads postpartum vascular dysfunction, which could increase the risk for cardiovascular complications later in life, is not known. Here, we aimed to determine whether a gestational dyslipidemia affects postpartum vascular health and induces early signs of atherosclerosis.

View Article and Find Full Text PDF

Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age.

View Article and Find Full Text PDF

Advanced maternal age (≥35 years) increases the risk of vascular complications in pregnancy that can result in fetal growth restriction and preeclampsia. Endoplasmic reticulum (ER) stress has been linked to adverse pregnancy outcomes in these complicated pregnancies. However, the role of ER stress in advanced maternal age is not known.

View Article and Find Full Text PDF

Prenatal hypoxia is a common complication of pregnancy and is associated with detrimental health outcomes, such as impaired cardiac and vascular function, in adult offspring. Exposure to prenatal hypoxia reportedly impacts the reproductive system of female offspring. Whether exposure to prenatal hypoxia influences pregnancy adaptations and outcomes in these female offspring is unknown.

View Article and Find Full Text PDF

Fetal hypoxia, a major consequence of complicated pregnancies, impairs offspring cardiac tolerance to ischemia-reperfusion (I/R) insult; however, the mechanisms remain unknown. Endothelin-1 (ET-1) signaling through the endothelin A receptors (ET) is associated with cardiac dysfunction. We hypothesized that prenatal hypoxia exacerbates cardiac susceptibility to I/R via increased ET-1 and ET levels, whereas ET inhibition ameliorates this.

View Article and Find Full Text PDF

Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied.

View Article and Find Full Text PDF

Elucidation of non-canonical protein functions can identify novel tissue homeostasis pathways. Herein, we describe a role for the Bcl-2 family member BAD in postnatal mammary gland morphogenesis. In Bad knock-in mice, where BAD cannot undergo phosphorylation at 3 key serine residues, pubertal gland development is delayed due to aberrant tubulogenesis of the ductal epithelium.

View Article and Find Full Text PDF

Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult.

View Article and Find Full Text PDF

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes.

View Article and Find Full Text PDF

The lectin-like oxidized low-density-lipoprotein (oxLDL) receptor-1 (LOX-1) has been shown to induce angiotensin II (AngII) type 1 receptor (AT1) activation, contributing to vascular dysfunction. Preeclampsia is a pregnancy complication characterized by vascular dysfunction and increased LOX-1 and AT1 activation; however, whether LOX-1 and AT1 activity contributes to vascular dysfunction in preeclampsia is unknown. We hypothesized that increased oxLDL levels during pregnancy lead to LOX-1 activation and subsequent AT1 activation, resulting in vascular dysfunction.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Does treatment of hypoxic dams with a placenta-targeted antioxidant prevent the release of placenta-derived factors that impair maturation or growth of fetal cardiomyocytes in vitro? What is the main finding and its importance? Factors released from hypoxic placentae impaired fetal cardiomyocyte maturation (induced terminal differentiation) and growth (increased cell size) in vitro, which was prevented by maternal treatment with a placenta-targeted antioxidant (nMitoQ). Moreover, there were no sex differences in the effects of placental factors on fetal cardiomyocyte maturation and growth. Overall, our data suggest that treatment targeted against placental oxidative stress could prevent fetal programming of cardiac diseases via the release of placental factors.

View Article and Find Full Text PDF

Vascular complications in pregnancy (e.g. preeclampsia) are a major source of maternal and foetal morbidity and mortality, and may be due to excessive release of placental syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation.

View Article and Find Full Text PDF

Breast cancer patients are commonly treated with taxane (e.g. docetaxel) chemotherapy, despite poor outcomes and eventual disease relapse.

View Article and Find Full Text PDF

Pregnancy complications associated with chronic fetal hypoxia have been linked to the development of adult cardiovascular disease in the offspring. Prenatal hypoxia has been shown to increase placental oxidative stress and impair placental function in a sex-specific manner, thereby affecting fetal development. As oxidative stress is central to placental dysfunction, we developed a placenta-targeted treatment strategy using the antioxidant MitoQ encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative/nitrosative stress and improve placental function without direct drug exposure to the fetus in order to avoid off-target effects during development.

View Article and Find Full Text PDF

Syncytiotrophoblast extracellular vesicles (STBEVs), released into the maternal circulation during pregnancy, have been shown to affect vascular function; however, the mechanism remains unknown. In rats, STBEVs were shown to reduce endothelium-mediated vasodilation via lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a multi-ligand scavenger receptor that has been associated with vascular dysfunction. Recently, LOX-1 was shown to interact with the angiotensin II type 1 receptor (AT-1).

View Article and Find Full Text PDF

Pregnancy at an advanced maternal age has an increased risk of complications for both the mothers and their offspring. We have previously shown that advanced maternal age in a rat model leads to poor fetal outcomes, maternal vascular dysfunction, and hypertension, concordant with findings in humans. Moreover, offspring from aged dams had sex-specific cardiovascular dysfunction in young adulthood.

View Article and Find Full Text PDF

Key Points: Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated.

View Article and Find Full Text PDF