Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression.
View Article and Find Full Text PDFThe specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the transposase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells.
View Article and Find Full Text PDF