Brachial plexus birth injury (BPBI) results in shoulder and elbow paralysis with shoulder internal rotation and elbow flexion contracture as frequent sequelae. The purpose of this study was to develop a technique for measuring functional movement and examine the effect of brachial plexus injury location (preganglionic and postganglionic) on functional movement outcomes in a rat model of BPBI, which we achieved through integration of gait analysis with musculoskeletal modeling and simulation. Eight weeks following unilateral brachial plexus injury, sagittal plane shoulder and elbow angles were extracted from gait recordings of young rats (n = 18), after which rats were sacrificed for bilateral muscle architecture measurements.
View Article and Find Full Text PDFThe mechanical impedance of the joints of the leg governs the body's response to external disturbances, and its regulation is essential for the completion of tasks of daily life. However, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In this work, we introduce a method to estimate the mechanical impedance of spring-mass systems using a torque-controllable exoskeleton with the intention of extending these methods to characterize the mechanical impedance of the human knee during locomotion.
View Article and Find Full Text PDF