Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.
View Article and Find Full Text PDFHyaluronic acid (HA) is a key component of synovial fluid as it plays a crucial role in joint physiology. Its biological activity is influenced by molecular weight, local concentration, and persistence in joints. High-molecular-weight HA has a consolidated history of clinical use, whereas little is known about the metabolic effect of low-molecular-weight hyaluronate on cartilage differentiation.
View Article and Find Full Text PDFIntestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS).
View Article and Find Full Text PDFSeveral studies tried to identify digestive determinants of individual variation in feed efficiency between fattening bulls, because of their importance for breeding and management strategies. Most studies focused on single traits or single diet. Little is known about diet-dependent differences in digestive determinants and on their relative importance in distinguishing divergent residual feed intake (RFI) bulls.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2024
We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels.
View Article and Find Full Text PDFArticular cartilage degradation due to injury, disease and aging is a common clinical issue as current regenerative therapies are unable to fully replicate the complex microenvironment of the native tissue which, being avascular, is featured by very low ability to self-regenerate. The extracellular matrix (ECM), constituting almost 90% of the entire tissue, plays a critical role in its function and resistance to compressive forces. In this context, the current tissue engineering strategies are only partially effective in restoring the biology and function of the native tissue.
View Article and Find Full Text PDFBackground: The interest in acetate and propionate as short chain fatty acids (SCFA) derives from research on alternative strategies to the utilization of antibiotics in pig farms. SCFA have a protective role on the intestinal epithelial barrier and improve intestinal immunity by regulating the inflammatory and immune response. This regulation is associated with an increase in intestinal barrier integrity, mediated by the enhancement of tight junction protein (TJp) functions, which prevent the passage of pathogens through the paracellular space.
View Article and Find Full Text PDFDue to the importance of joint disease and ostearthritis (OA) in equine athletes, new regenerative treatments to improve articular cartilage repair after damage are gaining relevance. Chondrocyte de-differentiation, an important pathogenetic mechanism in OA, is a limiting factor when differentiated articular chondrocytes are used for cell-based therapies. Current research focuses on the prevention of this de-differentiation and/or on the re-differentiation of chondrocytes by employing different strategies in vitro and in vivo.
View Article and Find Full Text PDFBackground: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations.
Methods: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice.
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD) is the most common complication of preterm delivery, with significant morbidity and mortality in a neonatal intensive care setting. Research in this field aims to identify the mechanisms of late lung development with possible therapeutic targets and the improvement of medical management. Rabbits represent a suitable lab preclinical tool for mimicking the clinical BPD phenotype.
View Article and Find Full Text PDFThe demand for artificial or bioartificial engineered tissues is increasing today in regenerative medicine techniques to replace and restore the physiological function of damaged tissues. Such engineered constructs hold different properties depending on the tissue to be replicated. As for vascularized tissues, complex biocompatible structures, namely scaffolds, play a key role in supporting oxygen and nutrient supply, thus sustaining tissue neoformation and integration with the host.
View Article and Find Full Text PDFCurrently, the main limitation for the use of adult differentiated chondrocytes in cell-based therapy and tissue engineering for the repair of articular cartilage is the difficulty of maintaining their state of differentiation during cell expansion. The adult articular cartilage has no direct blood supply, and local oxygen concentrations range from 5%-10% at the surface near the synovial fluid to less than 1% in the deep layer. Low oxygen tension is currently considered an important environmental condition for chondrocytes, and hypoxia has been explored as a signal potentially promoting differentiation and matrix deposition.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive disease with no curative pharmacological treatment. The most used animal model of IPF for anti-fibrotic drug screening is bleomycin (BLM)-induced lung fibrosis. However, several issues have been reported: the balance among disease resolution, an appropriate time window for therapeutic intervention and animal welfare remain critical aspects yet to be fully elucidated.
View Article and Find Full Text PDFSingle cell classification is elucidating homeostasis and pathology in tissues and whole organs. We applied in situ spatial proteomics by multiplex antibody staining to routinely processed mouse lung, healthy and during a fibrosis model. With a limited validated antibody panel (24) we classify the normal constituents (alveolar type I and II, bronchial epithelia, endothelial, muscular, stromal and hematopoietic cells) and by quantitative measurements, we show the progress of lung fibrosis over a 4 weeks course, the changing landscape and the cell-specific quantitative variation of a multidrug transporter.
View Article and Find Full Text PDFBackground: Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (β-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2).
View Article and Find Full Text PDFArginine is a semi-essential amino acid, supplementation with which induces a reduction of intestinal damage and an improvement of intestinal immunity in weaned piglets, but the mechanism is not yet entirely clear. The aim of this study was to characterise a co-culture model by measuring changes in gene expression over time (24 and 48 h) in intestinal IPEC-J2 cells in the presence of immune cells activated with phytohemagglutinin and, consequently, to assess the effectiveness of arginine deprivation or supplementation in modulating the expression of certain cytokines related to the regulation of intestinal cells' function. The main results show the crucial role of arginine in the viability/proliferation of intestinal cells evaluated by an MTT assay, and in the positive regulation of the expression of pro-inflammatory (, , , ) and anti-inflammatory () cytokines.
View Article and Find Full Text PDFThree-dimensional (3D) printing has gained popularity in tissue engineering and in the field of cartilage regeneration. This is due to its potential to generate scaffolds with spatial variation of cell distribution or mechanical properties, built with a variety of materials that can mimic complex tissue architecture. In the present study, horse articular chondrocytes were cultured for 2 and 4 weeks in 3D-printed chitosan (CH)-based scaffolds prepared with or without hyaluronic acid and in the presence of fetal bovine serum (FBS) or platelet lysate (PL).
View Article and Find Full Text PDFImmunodetection on mouse routinely processed tissue via antibodies raised in mice faces cross-reactivity of the secondary anti-mouse reagents with endogenous immunoglobulins, which permeate the tissue. Various solutions to this problem have been devised and include endogenous Ig block with anti-mouse Fab fragments or directly conjugated primary antibodies. Mouse isotype-specific antibodies, differently from reagents directed against both heavy and light chains, fail to detect endogenous Ig after fixation and embedding, while providing a clean and specific detection system for mouse antibodies on mouse routinely processed tissue.
View Article and Find Full Text PDFBiofunctionalization was investigated for polymers and metals considering their scarce integration ability. On the contrary few studies dealt with ceramic biofunctionalization because the bioactive and bioresorbable surfaces of ceramics are able to positively interact with biological environment. In this study the cell-response improvement on biofunctionalized wollastonite and diopside-based scaffolds was demonstrated.
View Article and Find Full Text PDFAlthough increasing used in the preclinical testing of new anti-fibrotic drugs, a thorough validation of micro-computed tomography (CT) in pulmonary fibrosis models has not been performed. Moreover, no attempts have been made so far to define density thresholds to discriminate between aeration levels in lung parenchyma. In the present study, a histogram-based analysis was performed in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis by micro-CT, evaluating longitudinal density changes from 7 to 21 days after BLM challenge, a period representing the progression of fibrosis.
View Article and Find Full Text PDFIn vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2020
The systemic delivery of bleomycin (BLM) to mice through subcutaneously implanted osmotic minipumps may be used to experimentally mimic the typical features of systemic sclerosis and related interstitial lung diseases. The published studies on this model principally have focused on induced dermal modifications, probably because lung lesions are typically mild, subpleurally localized, and difficult to analyze. The use of high BLM doses to increase their severity has been proposed but is ethically questionable because of the compromising of animal welfare.
View Article and Find Full Text PDF