We previously reported that, in cultured hepatocytes, mitochondrial aquaporin-8 (AQP8) channels facilitate the conversion of ammonia to urea and that the expression of human AQP8 (hAQP8) enhances ammonia-derived ureagenesis. In this study, we evaluated whether hepatic gene transfer of hAQP8 improves detoxification of ammonia to urea in normal mice as well as in mice with impaired hepatocyte ammonia metabolism. A recombinant adenoviral (Ad) vector encoding hAQP8, AdhAQP8, or a control Ad vector was administered via retrograde infusion into the bile duct of the mice.
View Article and Find Full Text PDFHepatic ammonia detoxification to urea is critical for the prevention of hyperammonemia and neurological damage. Hepatocyte mitochondrial aquaporin-8 (AQP8) channels have been involved in ammonia-derived ureagenesis. Herein, we studied whether the adenoviral gene transfer of human AQP8 (hAQP8) to hepatocyte mitochondria enhances ammonia conversion to urea.
View Article and Find Full Text PDFBile secretion by hepatocytes is an osmotic process. The output of bile salts and other organic anions (e.g.
View Article and Find Full Text PDFWe recently provided evidence suggesting that mitochondrial aquaporin-8 (mtAQP8), a channel protein able to conduct HO, is involved in the modulation of hepatocyte cholesterogenesis. To expand that study, we cultured human hepatocyte-derived Huh-7 cells in medium with lipoprotein-deficient serum (LPDS) to induce the de novo synthesis of cholesterol and fatty acids. We found that LPDS induced mtAQP8 expression and that AQP8 gene silencing significantly down-regulated the LPDS-induced synthesis of cholesterol and fatty acids as well as the expression of the corresponding key biosynthetic enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase and fatty acid synthase.
View Article and Find Full Text PDFWe present data about the synthesis of urea from different substrates, i.e., free ammonia, glutamine and alanine in primary cultured rat hepatocytes treated or untreated with the model hepatotoxic agent thioacetamide (TAA).
View Article and Find Full Text PDFEvidence shows that oral glycerol supplementation during the early stages of rat liver cancer reduces the growth of preneoplastic lesions. Besides, human hepatocellular carcinoma (HCC) cells display decreased expression of glycerol channel aquaporin 9 (AQP9) and also diminished glycerol-3-phosphate (G3P) content. According to this, we analyzed glycerol metabolism during the initial stages of rat liver carcinogenesis.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
December 2019
The purpose of this minireview is to show that a new paradigm is developing regarding hepatic bile flow. The focus thus far has been on carrier-mediated transport of bile acids and other solutes, such as glutathione, which create an osmotic gradient for the transcellular and paracellular flow of water into canaliculi. In addition to the physicochemical properties of bile acids, which govern the osmotic gradient, data now exist showing that the tight junctions governing paracellular water flow and Aquaporin-8 water channels governing transcellular water flow are regulated independently.
View Article and Find Full Text PDFMultidrug resistance-associated protein 2 (MRP2/ABCC2), a hepatocyte canalicular transporter involved in bile secretion, is downregulated in cholestasis triggered by lipopolysaccharide. The human aquaporin-1 (hAQP1) adenovirus-mediated gene transfer to liver improves cholestasis by incompletely defined mechanisms. Here we found that hAQP1 did not affect MRP2/ABCC2 expression, but significantly increased its transport activity assessed in situ with endogenous and exogenous substrates, likely by a hAQP1-induced increase in canalicular membrane cholesterol amount.
View Article and Find Full Text PDFThis article reports experimental data related to the research article entitled "Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis" [Danielli et al., 2019]. We present data about hydrogen peroxide (HO) release from mitochondria isolated from rat hepatocytes with or without silencing of aquaporin-8 (AQP8) protein expression.
View Article and Find Full Text PDFCholesterol, via sterol regulatory element-binding protein (SREBP) transcription factors, activates or represses genes involved in its hepatic biosynthetic pathway, and also modulates the expression of hepatocyte mitochondrial aquaporin-8 (mtAQP8), a channel that can function as peroxiporin by facilitating the transmembrane diffusion of HO. Here we tested the hypothesis that mtAQP8 is involved in the SREBP-mediated regulation of hepatocyte cholesterol biosynthesis. Using human hepatocyte-derived Huh-7 cells and primary rat hepatocytes, we found that mtAQP8 knockdown significantly downregulated de novo cholesterol synthesis as well as protein expressions of SREBP-2 and its target gene, a rate-limiting enzyme in cholesterol synthesis 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR).
View Article and Find Full Text PDFReactive oxygen species (ROS) are produced as a result of aerobic metabolism and as by-products through numerous physiological and biochemical processes. While ROS-dependent modifications are fundamental in transducing intracellular signals controlling pleiotropic functions, imbalanced ROS can cause oxidative damage, eventually leading to many chronic diseases. Moreover, increased ROS and reduced nitric oxide (NO) bioavailability are main key factors in dysfunctions underlying aging, frailty, hypertension, and atherosclerosis.
View Article and Find Full Text PDFPlant-derived bioactive compounds have protective role for plants but may also modulate several physiological processes of plant consumers. In the last years, a wide spectrum of phytochemicals have been found to be beneficial to health interacting with molecular signaling pathways underlying critical functions such as cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance, cell volume regulation, metabolic homeostasis, and energy balance. Hence, a large number of biologically active phytocompounds of foods have been isolated, characterized, and eventually modified representing a natural source of novel molecules to prevent, delay or cure several human diseases.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2018
Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis.
View Article and Find Full Text PDFLipopolysaccharides (LPS) are known to cause cholestasis in sepsis. There is evidence that a defective expression of canalicular aquaporin water channels contributes to bile secretory failure in LPS-induced cholestasis. Thus, we studied whether the hepatic adenovirus-mediated transfer of human aquaporin-1 gene (haqp1) can improve the cholestasis induced by LPS.
View Article and Find Full Text PDFHepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
View Article and Find Full Text PDFLevoglucosenone has been used as template for the synthesis of a wide variety of compounds with an impressive structural variability. However, scarce work has been done regarding the generation of new bioactive entities. Here we report the cytotoxic effect of levoglucosenone and some related derivatives against hepatocarcinoma cell lines.
View Article and Find Full Text PDFAquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs).
View Article and Find Full Text PDFUnlabelled: The adenoviral gene transfer of human aquaporin-1 (hAQP1) water channels to the liver of 17α-ethinylestradiol-induced cholestatic rats improves bile flow, in part by enhancing canalicular hAQP1-mediated osmotic water secretion. To gain insight into the mechanisms of 17α-ethinylestradiol cholestasis improvement, we studied the biliary output of bile salts (BS) and the functional expression of the canalicular BS export pump (BSEP; ABCB11). Adenovector encoding hAQP1 (AdhAQP1) or control vector was administered by retrograde intrabiliary infusion.
View Article and Find Full Text PDFAnal Biochem
February 2016
Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2015
Gender differences in the relative risk of developing metabolic complications, such as insulin resistance or non-alcoholic fatty liver disease (NAFLD), have been reported. The deregulation of glycerol metabolism partly contributes to the onset of these metabolic diseases, since glycerol constitutes a key substrate for the synthesis of triacylglycerols (TAGs) as well as for hepatic gluconeogenesis. The present mini-review covers the sex--related differences in glycerol metabolism and aquaglyceroporins (AQPs) and its impact in the control of adipose and hepatic fat accumulation as well as in whole-body glucose homeostasis.
View Article and Find Full Text PDFIt has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.
View Article and Find Full Text PDFWe recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated.
View Article and Find Full Text PDFWe previously found that mitochondrial aquaporin-8 (mtAQP8) channels facilitate mitochondrial H2O2 release in human hepatoma HepG2 cells and that their knockdown causes oxidant-induced mitochondrial dysfunction and loss of viability. Here, we studied whether apoptosis or necrosis is involved as the mode of cell death. We confirmed that siRNA-induced mtAQP8 knockdown significantly decreased HepG2 viability by MTT assay, LDH leakage, and trypan blue exclusion test.
View Article and Find Full Text PDFOne form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD), is a worrisome health problem worldwide characterized by intrahepatic triacylglycerol (TG) overaccumulation. NAFLD is a common feature of metabolic syndrome being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately resulting in excessive TG deposition in hepatocytes.
View Article and Find Full Text PDF