Publications by authors named "Raul Vivar"

Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the antifungal and antibiofilm properties of gallic acid derivatives TPP+-C10 and TPP+-C12 against two strains of Candida albicans, focusing on their effects on mitochondrial function.
  • Both compounds demonstrated antifungal activity with minimal inhibitory concentrations (MICs) ranging from 3.9 to 13 µM and significantly impaired mitochondrial function by reducing oxygen consumption and mitochondrial membrane potential.
  • TPP+-C12 was more effective than TPP+-C10 in decreasing ATP levels and in its antibiofilm activity, indicating that gallic acid derivatives linked to a TPP+ group could be promising agents in combating Candida infections.
View Article and Find Full Text PDF

Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) activation is a common response to most pathological conditions affecting the heart, characterized by increased cellular secretory capacity and increased expression of fibrotic markers, such as collagen I and smooth muscle actin type alpha (α-SMA). Fibrotic activation of CFs induces the increase in tissue protein content, with the consequent tissue stiffness, diastolic dysfunction, and heart failure. Therefore, the search for new mechanisms of CFs activation is important to find novel treatments for cardiac diseases characterized by fibrosis.

View Article and Find Full Text PDF

Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules.

View Article and Find Full Text PDF

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1β, IL-6, and TNF-α to control parasitemia.

View Article and Find Full Text PDF

Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation.

View Article and Find Full Text PDF

Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue.

View Article and Find Full Text PDF

Aims: Despite the broad pharmacological arsenal to treat hypertension, chronic patients may develop irreversible cardiac remodeling and fibrosis. Angiotensin II, the main peptide responsible for the Renin-Angiotensin-Aldosterone-System, has been closely linked to cardiac remodeling, hypertrophy, fibrosis, and hypertension, and some of these effects are induced by inflammatory mediators. Resolvin-D1 (RvD1) elicits potent anti-inflammatory and pro-resolving effects in various pathological models.

View Article and Find Full Text PDF

In the normal heart, cardiac fibroblasts (CFs) maintain extracellular matrix (ECM) homeostasis, whereas in pathological conditions, such as diabetes mellitus (DM), CFs converse into cardiac myofibroblasts (CMFs) and this CFs phenoconversion increase the synthesis and secretion of ECM proteins, promoting cardiac fibrosis and heart dysfunction. High glucose (HG) conditions increase TGF-β1 expression and FoxO1 activity, whereas FoxO1 is crucial to CFs phenoconversion induced by TGF-β1. In addition, FoxO1 increases CTGF expression, whereas CTGF plays an active role in the fibrotic process induced by hyperglycemia.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) have a key role in the inflammatory response after cardiac injury and are necessary for wound healing. Resolvins are potent agonists that control the duration and magnitude of inflammation. They decrease mediators of pro-inflammatory expression, reduce neutrophil migration to inflammation sites, promote the removal of microbes and apoptotic cells, and reduce exudate.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown.

View Article and Find Full Text PDF

Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-β1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart.

View Article and Find Full Text PDF

Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-β) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-β and STAT proteins in modulating the inflammatory response of CF remains unknown.

View Article and Find Full Text PDF

Background: Gastric contents aspiration is a high-risk condition for acute lung injury (ALI). Consequences range from subclinical pneumonitis to respiratory failure, depending on the volume of aspirate. A large increment in inflammatory cells, an important source of elastase, potentially capable of damaging lung tissue, has been described in experimental models of aspiration.

View Article and Find Full Text PDF

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels.

View Article and Find Full Text PDF

Recurrent aspiration of gastric contents has been associated with several interstitial lung diseases. Despite this association, the pathogenic role of aspiration in these diseases has been poorly studied and little is known about extracellular matrix (ECM) changes in animal models of repetitive events of aspiration. Our aim was to study the repair phase of lung injury induced by each of several instillations of gastric fluid in Sprague-Dawley rats to evaluate changes in ECM and their reversibility.

View Article and Find Full Text PDF

Background: Gastric contents aspiration in humans has variable consequences depending on the volume of aspirate, ranging from subclinical pneumonitis to respiratory failure with up to 70% mortality. Several experimental approaches have been used to study this condition. In a model of single orotracheal instillation of gastric fluid we have shown that severe acute lung injury evolves from a pattern of diffuse alveolar damage to one of organizing pneumonia (OP), that later resolves leaving normal lung architecture.

View Article and Find Full Text PDF

Unlabelled: Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation.

View Article and Find Full Text PDF

Fibroblasts play several homeostatic roles, including electrical coupling, paracrine signaling and tissue repair after injury. Fibroblasts have low secretory activity. However, in response to injury, they differentiate to myofibroblasts.

View Article and Find Full Text PDF

Bacterial lipopolysaccharide (LPS) is a known ligand of Toll-like receptor 4 (TLR4) which is expressed in cardiac fibroblasts (CF). Differentiation of CF to cardiac myofibroblasts (CMF) is induced by transforming growth factor-β1 (TGF-β1), increasing alpha-smooth muscle actin (α-SMA) expression. In endothelial cells, an antagonist effect between LPS-induced signaling and canonical TGF-β1 signaling was described; however, it has not been studied whether in CF and CMF the expression of α-SMA induced by TGF-β1 is antagonized by LPS and the mechanism involved.

View Article and Find Full Text PDF

Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing.

View Article and Find Full Text PDF

Unlabelled: Cardiac inflammation can be produced by pathogen-associated molecular patterns (PAMPs), from parasitic, bacterial or viral origin; or by danger-associated molecular patterns (DAMPs), released from dead cells after cardiac tissue damage, for example by cardiac infarction. Both, PAMPS and DAMPS activate TLR4 on resident immune cells and heart tissue cells, triggering an inflammatory process necessary to begin the wound healing process. Cardiac fibroblasts (CF) are the most abundant cells in the heart and are critical to wound healing, along with cardiac myofibroblasts (CMF), which are differentiated from CF through a TGF-β1-mediated process.

View Article and Find Full Text PDF