One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research.
View Article and Find Full Text PDFWhen do we die and what happens in the brain when we die? The mystery around these questions has engaged mankind for centuries. Despite the challenges to obtain recordings of the dying brain, recent studies have contributed to better understand the processes occurring during the last moments of life. In this review, we summarize the literature on neurophysiological changes around the time of death.
View Article and Find Full Text PDFIntuitively, the level of autonomy of an agent is related to the degree to which the agent's goals and behaviour are decoupled from the immediate control by the environment. Here, we capitalise on a recent information-theoretic formulation of autonomy and introduce an algorithm for calculating autonomy in a limiting process of time step approaching infinity. We tackle the question of how the autonomy level of an agent changes during training.
View Article and Find Full Text PDFFront Aging Neurosci
February 2022
The neurophysiological footprint of brain activity after cardiac arrest and during near-death experience (NDE) is not well understood. Although a hypoactive state of brain activity has been assumed, experimental animal studies have shown increased activity after cardiac arrest, particularly in the gamma-band, resulting from hypercapnia prior to and cessation of cerebral blood flow after cardiac arrest. No study has yet investigated this matter in humans.
View Article and Find Full Text PDFFront Hum Neurosci
September 2021
In this study, the information bottleneck method is proposed as an optimisation method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The information bottleneck is an information-theoretic optimisation method for solving problems with a trade-off between preserving meaningful information and compression. Its main practical application in machine learning is in representation learning or feature extraction.
View Article and Find Full Text PDFDeep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals.
View Article and Find Full Text PDFThe Coronavirus disease 2019 (Covid-19) pandemic has brought the world to a standstill. Healthcare systems are critical to maintain during pandemics, however, providing service to sick patients has posed a hazard to frontline healthcare workers (HCW) and particularly those caring for elderly patients. Various approaches are investigated to improve safety for HCW and patients.
View Article and Find Full Text PDFPerspective taking is the ability to take into account what the other agent knows. This skill is not unique to humans as it is also displayed by other animals like chimpanzees. It is an essential ability for social interactions, including efficient cooperation, competition, and communication.
View Article and Find Full Text PDFHuman brain has developed mechanisms to efficiently decode sensory information according to perceptual categories of high prevalence in the environment, such as faces, symbols, objects. Neural activity produced within localized brain networks has been associated with the process that integrates both sensory bottom-up and cognitive top-down information processing. Yet, how specifically the different types and components of neural responses reflect the local networks' selectivity for categorical information processing is still unknown.
View Article and Find Full Text PDFRecent experimental findings indicate that Purkinje cells in the cerebellum represent time intervals by mechanisms other than conventional synaptic weights. These findings add to the theoretical and experimental observations suggesting the presence of intra-cellular mechanisms for adaptation and processing. To account for these experimental results we propose a new biophysical model for time interval learning in a Purkinje cell.
View Article and Find Full Text PDFObjective: Numerous studies in the area of BCI are focused on the search for a better experimental paradigm-a set of mental actions that a user can evoke consistently and a machine can discriminate reliably. Examples of such mental activities are motor imagery, mental computations, etc. We propose a technique that instead allows the user to try different mental actions in the search for the ones that will work best.
View Article and Find Full Text PDFDespite its clinical importance, detection of highly divergent or yet unknown viruses is a major challenge. When human samples are sequenced, conventional alignments classify many assembled contigs as "unknown" since many of the sequences are not similar to known genomes. In this work, we developed ViraMiner, a deep learning-based method to identify viruses in various human biospecimens.
View Article and Find Full Text PDFPlace cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal's location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal.
View Article and Find Full Text PDFObjective: In this work, a classification method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) is proposed. The method is based on information transfer rate (ITR) maximisation.
Approach: The proposed classification method uses features extracted by traditional SSVEP-based BCI methods and finds optimal discrimination thresholds for each feature to classify the targets.
Recent advances in the field of artificial intelligence have revealed principles about neural processing, in particular about vision. Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We use DCNN to investigate which frequency bands correlate with feature transformations of increasing complexity along the ventral visual pathway.
View Article and Find Full Text PDFBMC Bioinformatics
September 2018
Background: Detection of highly divergent or yet unknown viruses from metagenomics sequencing datasets is a major bioinformatics challenge. When human samples are sequenced, a large proportion of assembled contigs are classified as "unknown", as conventional methods find no similarity to known sequences. We wished to explore whether machine learning algorithms using Relative Synonymous Codon Usage frequency (RSCU) could improve the detection of viral sequences in metagenomic sequencing data.
View Article and Find Full Text PDFMakkeh, Theis, and Vicente found that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decomposition (BROJA PID) measure. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model.
View Article and Find Full Text PDFEvolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong.
View Article and Find Full Text PDFBackground: We present VREX, a free open-source Unity toolbox for virtual reality research in the fields of experimental psychology and neuroscience.
Results: Different study protocols about perception, attention, cognition and memory can be constructed using the toolbox. VREX provides a procedural generation of (interconnected) rooms that can be automatically furnished with a click of a button.
In the present study we asked whether it is possible to decode personality traits from resting state EEG data. EEG was recorded from a large sample of subjects (n = 289) who had answered questionnaires measuring personality trait scores of the five dimensions as well as the 10 subordinate aspects of the Big Five. Machine learning algorithms were used to build a classifier to predict each personality trait from power spectra of the resting state EEG data.
View Article and Find Full Text PDFFront Integr Neurosci
August 2014
The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept.
View Article and Find Full Text PDFInformation theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions.
View Article and Find Full Text PDFThe membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex.
View Article and Find Full Text PDF