Characterized by their high spatiotemporal variability, rainfalls are difficult to predict, especially under climate change. This study proposes a multilayer perceptron (MLP) network optimized by Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Firefly Algorithm (FFA), and Teleconnection Pattern Indices - such as North Atlantic Oscillation (NAO), Southern Oscillations (SOI), Western Mediterranean Oscillation (WeMO), and Mediterranean Oscillation (MO) - to model monthly rainfalls at the Sebaou River basin (Northern Algeria). Afterward, we compared the best-optimized MLP to the application of the Extreme Learning Machine optimized by the Bat algorithm (Bat-ELM).
View Article and Find Full Text PDF