Objective: We study the use of speech recognition and information extraction to generate drafts of Australian nursing-handover documents.
Methods: Speech recognition correctness and clinicians' preferences were evaluated using 15 recorder-microphone combinations, six documents, three speakers, Dragon Medical 11, and five survey/interview participants. Information extraction correctness evaluation used 260 documents, six-class classification for each word, two annotators, and the CRF++ conditional random field toolkit.