In this paper, a robust nonlinear approach for control of liquid levels in a quadruple tank system (QTS) is developed based on the design of an integrator backstepping super-twisting controller, which implements a multivariable sliding surface, where the error trajectories converge to the origin at any operating point of the system. Since the backstepping algorithm is dependent on the derivatives of the state variables, and it is sensitive to measurement noise, integral transformations of the backstepping virtual controls are performed via the modulating functions technique, rendering the algorithm derivative-free and immune to noise. The simulations based on the dynamics of the QTS located at the Advanced Control Systems Laboratory of the Pontificia Universidad Católica del Perú (PUCP) showed a good performance of the designed controller and therefore the robustness of the proposed approach.
View Article and Find Full Text PDFThe robust control of the crude oil outlet temperature uniformity in a heating furnace of a petroleum refinery is addressed. A reliable dynamic model of the nominal process has been attained using a system identification procedure based on real-time data. This procedure yields a second order model with a dominant time-delay.
View Article and Find Full Text PDFThis article addresses the identification of the nonlinear dynamics of the main pool of a laboratory hydraulic canal installed in the University of Castilla La Mancha. A new dynamic model has been developed by taking into account the measurement errors caused by the different parts of our experimental setup: (a) the nonlinearity associated to the input signal, which is caused by the movements of the upstream gate, is avoided by using a nonlinear equivalent upstream gate model, (b) the nonlinearity associated to the output signal, caused by the sensor's resolution, is avoided by using a quantization model in the identification process, and (c) the nonlinear behaviour of the canal, which is related to the working flow regime, is taken into account considering two completely different models in function of the operating regime: the free and the submerged flows. The proposed technique of identification is based on the time-domain data.
View Article and Find Full Text PDFThis article addresses the control of a laboratory hydraulic canal prototype that has fractional order dynamics and a time delay. Controlling this prototype is relevant since its dynamics closely resembles the dynamics of real main irrigation canals. Moreover, the dynamics of hydraulic canals vary largely when the operation regime changes since they are strongly nonlinear systems.
View Article and Find Full Text PDF