Molecular fingerprints revealed by Raman techniques show great potential for biomedical applications, like disease diagnostic through Raman detection of tumor markers and other molecules in the cell membrane. However, SERS substrates used in membrane molecule studies produce enhanced Raman spectra of high variability and challenging band assignments that limit their application. In this work, these drawbacks are addressed to detect membrane-associated hemoglobin (Hb) in human erythrocytes through Raman spectroscopy.
View Article and Find Full Text PDFUsing detonation nanodiamonds and fluorescent nitrogen-vacancy center nanodiamonds, linked to gold nanoparticles, we synthesized two hybrid nanostructures (HGDs) that were subsequently conjugated with a fluorophore. An amplification effect induced by the gold nanoparticles increased the emission spectrum of the fluorophore, maximizing the possibilities for imaging applications of these HGDs. The incubation of the nanostructures with HeLa cells produced no alteration of cell viability after 3 h and showed the presence of nanostructures in the cell cytoplasm at 24 h.
View Article and Find Full Text PDF