Back in 1959, Richard Feynman, in his famous lecture, stated that "", which made us aware of the possibilities of nanotechnology, i [...
View Article and Find Full Text PDFThe photoluminescence and third-order nonlinear optical effects of co-implanted silicon nanoparticles and nitrogen ions in a silica matrix were studied. Experimental evidence shows the potential of nitrogen ions for changing optical properties exhibited by silicon nanoparticles implanted in an integrated system. The modification of the optical bandgap and photoluminescent intensity in the studied nanomaterials by the incorporation of nitrogen was analyzed.
View Article and Find Full Text PDFWe present a study of the optical second-order nonlinearity of type I collagen fibers grown via second harmonic generation (SHG) experiments and analyze the observed polarization-resolved SHG signal using previously reported SHG analytical expressions obtained for anisotropic tissue. Our results indicate that the effective second-order nonlinearity measured in the grown fibers is one order of magnitude lower than that of native collagen fibers. This is attributed to the formation of loose and dispersive fibrillar networks of thinner collagen fibrils that constitute the reassembled collagen fibers.
View Article and Find Full Text PDFIn this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model.
View Article and Find Full Text PDFOrdered metallic nanoprism arrays have been proposed as novel and versatile systems for the observation of nonlinear effects such as nonlinear absorption. The study of the effect of the local field reinforcement on the fast optical third order nonlinear response around the Surface Plasmon Resonance is of great interest for many plasmonic applications. In this work, silver nanoprism arrays have been synthesized by the nanosphere lithography method.
View Article and Find Full Text PDFWe present the implementation of a combined digital scanned light-sheet microscope (DSLM) able to work in the linear and nonlinear regimes under either Gaussian or Bessel beam excitation schemes. A complete characterization of the setup is performed and a comparison of the performance of each DSLM imaging modality is presented using in vivoCaenorhabditis elegans samples. We found that the use of Bessel beam nonlinear excitation results in better image contrast over a wider field of view.
View Article and Find Full Text PDFWe present second-harmonic generation (SHG) measurements and simulations from a silica matrix containing randomly distributed but aligned elongated silver nanoparticles (NPs). The composites were produced by a double ion-implantation process of silver nanoparticles followed by an irradiation with Si ions. It is demonstrated that one can model the experimental results by considering the sub-micrometric composite layer as a nonlinear media containing rod NPs for which the hyperpolarizability tensor is cylindrically symmetric along the NP long axis.
View Article and Find Full Text PDFWe report the use of laser ablation of metal targets onto a glass substrate as a way of producing waveguiding devices. In the geometry employed, the nanosecond pulses used for the ablation pass through the glass substrate, and are focused on the metal surface, which is located in close proximity with the substrate. We present measurements of the refractive index profile obtained with this technique, and present a discussion of the physical mechanisms that produce the profiles measured.
View Article and Find Full Text PDF