J Opt Soc Am A Opt Image Sci Vis
November 2022
The Retinex theory, originally developed by Land and McCann as a computation model of the human color sensation, has become, with time, a pillar of digital image enhancement. In this area, the Retinex algorithm is widely used to improve the quality of any input image by increasing the visibility of its content and details, enhancing its colorfulness, and weakening, or even removing, some undesired effects of the illumination. The algorithm was originally described by its creators in terms of a sequence of image processing operations and was not fully formalized mathematically.
View Article and Find Full Text PDFThe image contrast is a feature capturing the variation of the image signal across the space. Such a feature is very useful to describe the local image structure at different scales and thus it is relevant to many computer vision applications, like image/texture retrieval and object recognition. In this work, we present MiRCo, a novel measure of image contrast derived from the Retinex theory.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2017
Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2017
Retinex is an early and famous theory attempting to estimate the human color sensation derived from an observed scene. When applied to a digital image, the original implementation of retinex estimates the color sensation by modifying the pixels channel intensities with respect to a local reference white, selected from a set of random paths. The spatial search of the local reference white influences the final estimation.
View Article and Find Full Text PDF