The date of the Moon-forming impact places an important constraint on Earth's origin. Lunar age estimates range from about 30 Myr to 200 Myr after solar system formation. Central to this age debate is the greater abundance of W inferred for the silicate Moon than for the bulk silicate Earth.
View Article and Find Full Text PDFSubduction zone or arc magmas are known to display a characteristic depletion of High Field Strength Elements (HFSE) relative to other similarly incompatible elements, which can be attributed to the presence of the accessory mineral rutile (TiO2) in the residual slab. Here we show that the partitioning behavior of vanadium between rutile and silicate melt varies from incompatible (∼0.1) to compatible (∼18) as a function of oxygen fugacity.
View Article and Find Full Text PDFIn low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate by high temperature quench experiments that platinum and arsenic self-organize to nanoparticles, well before the melt has reached a Pt-As concentration at which discrete Pt arsenide minerals become stable phases.
View Article and Find Full Text PDF