The preset neurodegenerations in Alzheimer disease (AD) are due to several mechanisms such as amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, neurofibrillary tangles, cholinergic dysfunction, among others. The aim of this work was to develop multitarget molecules for the treatment of AD. Therefore, a family of 64 molecules was designed based on ligand structure pharmacophores able to inhibit the activity of beta secretase (BACE1) and acetylcholinesterase (AChE) as well as to avoid amyloid beta (Aβ1-42) oligomerization.
View Article and Find Full Text PDFMolecules
October 2020
Alzheimer's disease (AD) is a neurodegenerative disease with no cure nowadays; there is no treatment either to prevent or to stop its progression. In vitro studies suggested that tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl) carbamate named the compound can act as both β-secretase and an acetylcholinesterase inhibitor, preventing the amyloid beta peptide (Aβ) aggregation and the formation of fibrils (fAβ) from Aβ. This work first aimed to assess in in vitro studies to see whether the death of astrocyte cells promoted by Aβ could be prevented.
View Article and Find Full Text PDF