The medical use of nitroglycerin (GTN) is limited by patient tolerance. The present study evaluated the role of mitochondrial Complex I in GTN biotransformation and the therapeutic effect of mitochondrial antioxidants. The development of GTN tolerance (in rat and human vessels) produced a decrease in mitochondrial O(2) consumption.
View Article and Find Full Text PDFIn this study, we assessed the feasibility of using positron emission tomography (PET) and the tracer [¹¹C]OMAR ([¹¹C]JHU75528), an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1) receptor system. Wild-type (WT) and CB1 knockout (KO) animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50%) than in KO animals in baseline conditions.
View Article and Find Full Text PDFDiabetes is a chronic disease and as a consequence of the overproduction of reactive oxygen species (ROS), is related with oxidative stress. There are different sources of ROS, of which mitochondria is the main one. Oxidative stress seems to play an important role in mitochondria- mediated disease processes, though the exact molecular mechanisms responsible remain elusive.
View Article and Find Full Text PDFWhereas molecular imaging studies in the aging human brain have predominantly demonstrated reductions in serotonin transporter (5-HTT) availability, the majority of the rodent studies, using autoradiographic methods, report increases in neural 5-HTT levels with age. To our knowledge, however, no previous rodent studies have assessed this topic in vivo, and therefore it remains unclear whether this discrepancy arises from methodological or inter-species differences. We performed an [(11)C]-DASB microPET study to evaluate the effects of aging on 5-HTT availability in the rat brain.
View Article and Find Full Text PDFPurpose: Mitochondrial dysfunction plays a key role in sepsis.
Methods: We used a sepsis model of human endothelial cells (HUVEC) to study mitochondrial function during normoxic (21% O(2)) and hypoxic (1% O(2)) conditions.
Results: When stimulated with a LPS cocktail, HUVEC displayed an increase of nitric oxide (NO) in normoxic and hipoxic conditions, being higher at 21% O(2).
The current interest in developing Glycine transporter Type 1 (GlyT-1) inhibitors, for diseases such as schizophrenia, has led to the demand for a GlyT-1 PET molecular imaging tool to aid drug development and dose selection. We report on [(11) C]GSK931145 as a novel GlyT-1 imaging probe in primate and man. Primate PET studies were performed to determine the level of specific binding following homologous competition with GSK931145 and the plasma-occupancy relationship of the GlyT-1 inhibitor GSK1018921.
View Article and Find Full Text PDFNanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography.
View Article and Find Full Text PDFThe GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats.
View Article and Find Full Text PDFPurpose: (11)C-GSK931145 is a novel radioligand suitable for imaging the glycine transporter 1 (GlyT-1) in brain. In the present study, human dosimetry is estimated from baboon and human biodistribution data.
Procedures: Three baboons and eight healthy human volunteers underwent whole-body positron emission tomography (PET) scans.
Purpose: This study evaluates the performance of simultaneous dual-tracer technique (SDTT) in static positron emission tomography (PET) studies using 2-deoxy-2-[¹⁸F]fluoro-D-glucose and [¹³N]ammonium as radiotracers.
Procedures: The effects of applying SDTT either to the reconstructed image or directly to the sinogram, different rebinning algorithms, total acquisition time, and frame duration were investigated; first, using a specific phantom and later using an in vivo application of the study of cerebral ischemia.
Results: The best results were obtained using the image method with single-slice rebinning and a total acquisition time of at least 20 min.
[(11)C]NNC112 (8-chloro-7-hydroxy-3-methyl-5-(7-benzofuranyl)-2,3,4,5-tetrahydro-IH-3-benzazepine), a selective positron-emission tomography (PET) ligand for the D(1) receptor (R) over the 5-HT(2A) R in vitro, has shown lower selectivity in vivo, hampering measurement of D(1) R in the cortex. [(11)C]NNC112 PET and intravenous (i.v) ketanserin challenge were used to (1) confirm the previous findings of [(11)C]NNC112 in vivo D(1) R selectivity, and (2) develop a feasible methodology for imaging cortical D(1) R without contamination by 5-HT(2A) R.
View Article and Find Full Text PDF