Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment.
View Article and Find Full Text PDFIn this study, we show that conditioned media (CM) generated from bone marrow (BM)-derived mesenchymal stromal cells lead to BCR-ABL independent STAT3 activation. Activation of STAT3 is important not only for survival of CML cells but also for its protection against Nilotinib (NI), within the BM microenvironment. Reducing the expression of both JAK2 and TYK2 or utilizing a pan-JAK inhibitor blocked CM-mediated STAT3 activation and sensitized CML cells to NI-mediated cell death.
View Article and Find Full Text PDFHYD1 is a D-amino acid peptide that was previously shown to inhibit adhesion of prostate cancer cells to the extracellular matrix. In this study, we show that in addition to inhibiting adhesion of multiple myeloma (MM) cells to fibronectin, HYD1 induces cell death in MM cells as a single agent. HYD1-induced cell death was necrotic in nature as shown by: (a) decrease in mitochondrial membrane potential (Deltapsi(m)), (b) loss of total cellular ATP, and (c) increase in reactive oxygen species (ROS) production.
View Article and Find Full Text PDFCell adhesion to fibronectin is known to confer a temporally related cell adhesion-mediated drug resistance (CAM-DR). However, it is unknown whether cell adhesion during drug selection influences the more permanent form of acquired drug resistance. To examine this question, we compared the acquisition of mitoxantrone resistance in U937 cells adhered to fibronectin versus cells selected in a traditional suspension culture.
View Article and Find Full Text PDFCancer cell adhesion confers a transient, de novo drug-resistant phenotype referred to as cell adhesion-mediated drug resistance (CAM-DR). In this report, we extend the CAM-DR phenotype to primary specimens from patients with myeloma, providing further evidence that CAM-DR is a viable clinical form of drug resistance. To examine mechanisms of cellular resistance to melphalan, we compared genotypic and phenotypic profiles of acquired and de novo melphalan resistance in an isogenic human myeloma cell line.
View Article and Find Full Text PDF