Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs).
View Article and Find Full Text PDFIn the late 80 s, a curious effect suggested by Aharanov et al. was found to lead to an anomalous amplification based on quantum measurements of weakly coupled systems. In this paper, we investigate the quantum control of the weak value amplification of a qubit system coupled to a meter.
View Article and Find Full Text PDF