Soil Aquifer Treatment (SAT) is used to increase groundwater resources and enhance the water quality of wastewater treatment plant (WWTP) effluents. The resulting water quality needs to be assessed. In this study, we investigate attenuation pathways of nitrogen (N) compounds (predominantly NH) from a secondary treatment effluent in pilot SAT systems: both a conventional one (SAT-Control system) and one operating with a permeable reactive barrier (PRB) to provide extra dissolved organic carbon to the recharged water.
View Article and Find Full Text PDFThis study presents a multi-disciplinary approach for the hydrogeological assessment and characterization of water resources in typical arid and semi-arid areas with high anthropogenic pressure, and where environmental conditions and political context prevent extensive field surveys. The use of a three-dimensional (3D) hydrogeological conceptual model, integrating hydrochemical and multi-isotope data, is proposed for the Batna and Biskra area (NE Algeria). Geological data were assembled in 3D geological software, from which a 3D hydrogeological conceptual model was constructed, which included the delineation of groundwater flow directions.
View Article and Find Full Text PDFNitrate (NO) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified.
View Article and Find Full Text PDFSci Total Environ
February 2021
The management of the anthropogenic water cycle must ensure the preservation of the quality and quantity of water resources and their careful allocation to the different uses. Protection of water resources requires the control of pollution sources that may deteriorate them. This is a challenging task in multi-stressed catchments.
View Article and Find Full Text PDFSoil-applied biochar has been reported to possess the potential to mitigate nitrate leaching and thus, exert beneficial effects beyond carbon sequestration. The main objective of the present study is to confirm if a pine gasification biochar that has proven able to decrease soil-soluble nitrate in previous research can indeed exert such an effect and to determine by which mechanism. For this purpose, lysimeters containing soil-biochar mixtures at 0, 12 and 50 t biochar ha were investigated in two different scenarios: a fresh biochar scenario consisting of fresh biochar and a fallow-managed soil, and an aged biochar scenario with a 6-yr naturally aged biochar in a crop-managed soil.
View Article and Find Full Text PDFThe migration of geogenic gases in continental areas with geothermal activity and active faults is an important process releasing greenhouse gases (GHG) to the lower troposphere. In this respect, caves in hypogenic environments are natural laboratories to study the compositional evolution of deep-endogenous fluids through the Critical Zone. Vapour Cave (Alhama, Murcia, Spain) is a hypogenic cave formed by the upwelling of hydrothermal CO-rich fluids.
View Article and Find Full Text PDFThe groundwater contamination by hexavalent chromium (Cr(VI)) in a site of the Matanza-Riachuelo River basin (MRB), Argentina, has been evaluated by determining the processes that control the natural mobility and attenuation of Cr(VI) in the presence of high nitrate (NO) contents. The groundwater Cr(VI) concentrations ranged between 1.9E-5 mM and 0.
View Article and Find Full Text PDFIn the framework of the Life+ InSiTrate project, a pilot-plant was established to demonstrate the viability of inducing in-situ heterotrophic denitrification to remediate nitrate (NO)-polluted groundwater. Two injection wells supplied acetic acid by pulses to an alluvial aquifer for 22months. The monitoring was performed by regular sampling at three piezometers and two wells located downstream.
View Article and Find Full Text PDFImproving the effectiveness and economics of strategies to remediate groundwater nitrate pollution is a matter of concern. In this context, the addition of whey into aquifers could provide a feasible solution to attenuate nitrate contamination by inducing heterotrophic denitrification, while recycling an industry residue. Before its application, the efficacy of the treatment must be studied at laboratory-scale to optimize the application strategy in order to avoid the generation of harmful intermediate compounds.
View Article and Find Full Text PDFAnaerobic batch and flow-through experiments were performed to assess the capacity of two organic substrates to promote denitrification of nitrate-contaminated groundwater within managed artificial recharge systems (MAR) in arid or semi-arid regions. Denitrification in MAR systems can be achieved through artificial recharge ponds coupled with a permeable reactive barrier in the form of a reactive organic layer. In arid or semi-arid regions, short-term efficient organic substrates are required due to the short recharge periods.
View Article and Find Full Text PDF