Using semiclassics to surmount the hurdle of bulk-surface inseparability, we derive the superconductor vortex spectrum in nonmagnetic Weyl semimetals and show that it stems from the Berry phase of orbits made of Fermi arcs on opposite surfaces and bulk chiral modes. Tilting the vortex transmutes it between bosonic, fermionic, and supersymmetric, produces periodic peaks in the density of states that signify novel nonlocal Majorana modes, and yields a thickness-independent spectrum at magic "magic angles." We propose (Nb,Ta)P as candidate materials and tunneling spectroscopy as the ideal experiment.
View Article and Find Full Text PDFMany clever routes to Majorana fermions have been discovered by exploiting the interplay between superconductivity and band topology in metals and insulators. However, realizations in semimetals remain less explored. We ask, "Under what conditions do superconductor vortices in time-reversal symmetric Weyl semimetals-three-dimensional semimetals with only time-reversal symmetry-trap Majorana fermions on the surface?" If each constant-k_{z} plane, where z is the vortex axis, contains equal numbers of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invariant ν=±1 in terms of the Fermi arc structure that signals the presence or absence of surface Majorana fermions.
View Article and Find Full Text PDF