STOP proteins, of 145 kD, act substoichiometrically to block end-wise disassembly of microtubules. STOPs bind to microtubules either during microtubule assembly or when added at steady state, and when binding to the polymers is apparently irreversible. They are not measurably lost from polymers under competition conditions, and there is no measurable exchange between polymers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 1983
Cold-labile microtubule protein can be rendered cold-stable by addition of a fraction containing a small number of polypeptides that are derived from cold-stable microtubules. These polypeptides can be obtained from purified cold-stable microtubules by passage through a DEAE-cellulose (DE-52) ion exchange column from which they emerge in the first eluate fraction. The stabilizing activity of these proteins is abolished by phosphorylation catalyzed by two types of protein kinases, one dependent on calmodulin and the other independent of that regulatory protein.
View Article and Find Full Text PDFA substantial subpopulation of mammalian brain crude extract microtubules is resistant to cold-temperature disassembly. We propose here that microtubules are rendered cold stable by rare substoichiometric blocks. Mild shearing of rat brain cold-stable microtubules makes them largely cold labile.
View Article and Find Full Text PDFWe have conducted preliminary investigations into the control of microtubule assembly in rat brain crude extract supernatants. The rationale for these experiments is that microtubules interact with many proteins and are undoubtedly subject to physiological control mechanisms that are lost during tubulin purification. A more complete understanding of the cellular regulation of microtubules must include the physiology of these proteins.
View Article and Find Full Text PDF