Publications by authors named "Raub C"

Background: Endotracheal intubation and mechanical ventilation comprise common life support interventions for patients in intensive care units (ICUs). Premature or delayed extubation increases the risk of morbidity and mortality. Despite following weaning protocols, 10-20 % of patients fail extubation within 48 h.

View Article and Find Full Text PDF

Sex differences in kidney stone formation are well known. Females generally have slightly acidic blood and higher urine pH when compared with males, which makes them more vulnerable to calcium stone formation, yet the mechanism is still unclear. We aimed to examine the role of sex in stone formation during hypercalciuria and urine alkalinization through acetazolamide and calcium gluconate supplementation, respectively, for 4 weeks in wild-type (WT) and moderately hypercalciuric [TRPC3 knockout [KO](-/-)] male and female mice.

View Article and Find Full Text PDF

Oral mucositis (OM) is a severe complication of cancer therapies caused by off-target cytotoxicity. Palifermin, which is recombinant human keratinocyte growth factor (KGF), is currently the only mitigating treatment available to a subset of OM patients. This study used a previously established model of oral mucositis on a chip (OM-OC) comprised of a confluent human gingival keratinocytes (GIE) layer attached to a basement membrane-lined subepithelial layer consisting of human gingival fibroblasts (HGF) and human dermal microvascular endothelial cells (HMEC) on a stable collagen I gel.

View Article and Find Full Text PDF

Optical diffraction tomography (ODT) solves an inverse scattering problem to obtain label-free, 3D refractive index (RI) estimation of biological specimens. This work demonstrates 3D RI retrieval methods suitable for partially-coherent ODT systems supported by intensity-only measurements consisting of axial and angular illumination scanning. This framework allows for access to 3D quantitative RI contrast using a simplified non-interferometric technique.

View Article and Find Full Text PDF

Melamine stabilizes heterogeneous nucleation of calcium crystals by increasing the retention time and decreasing the rate of dissolution. Stabilization of such mixed crystals limit the efficacy of non-invasive treatment options for kidney stones. Crystalline forms of uric acid (UA) are also involved in urolithiasis or UA kidney stones; however, its interactions with contaminating melamine and the resulting effects on the retention of kidney stones remain unknown.

View Article and Find Full Text PDF

Digital holographic microscopy is an imaging technique particularly well suited to the study of living cells in culture, as no labeling is required and computed phase maps produce high contrast, quantitative pixel information. A full experiment involves instrument calibration, cell culture quality checks, selection and setup of imaging chambers, a sampling plan, image acquisition, phase and amplitude map reconstruction, and parameter map post-processing to extract information about cell morphology and/or motility. Each step is described below, focusing on results from imaging four human cell lines.

View Article and Find Full Text PDF

Microfluidic-integrated freestanding membranes with suitable biocompatibility and tunable physicochemical properties are in high demand for a wide range of life science and biological studies. However, there is a lack of facile and rapid methods to integrate such versatile membranes into microfluidics. A recently invented interfacial electrofabrication of chitosan membranes offers an in-situ membrane integration strategy that is flexible, controllable, simple, and biologically friendly.

View Article and Find Full Text PDF

Oral mucositis (OM) is a debilitating complication affecting roughly 70% of head and neck cancer patients receiving chemotherapy and/or radiation treatment. No broadly effective preventative treatment for OM exists. Therefore, anmodel of cancer treatment-induced OM would aid studies into possible origins of the pathology and future drug targets to ameliorate it.

View Article and Find Full Text PDF

Optical phase and birefringence signals occur in cells and thin, semi-transparent biomaterials. A dual-modality quantitative phase and polarization microscope was designed to study the interaction of cells with extracellular matrix networks and to relate optical pathlength and birefringence signals within structurally anisotropic biomaterial constructs. The design was based on an existing, custom-built digital holographic microscope, to which was added a polarization microscope utilizing liquid crystal variable retarders.

View Article and Find Full Text PDF

Multi-wavelength digital holographic microscopy (MWDHM) provides indirect measurements of the refractive index for non-dispersive samples. Successive-shot MWDHM is not appropriate for dynamic samples and single-shot MWDHM significantly increases the complexity of the optical setup due to the need for multiple lasers or a wavelength tunable source. Here we consider deep learning convolutional neural networks for computational phase synthesis to obtain high-speed simultaneous phase estimates on different wavelengths and thus single-shot estimates of the integral refractive index without increased experimental complexity.

View Article and Find Full Text PDF

Articular cartilage birefringence relates to zonal architecture primarily of type II collagen, which has been assessed extensively in transmission, through thin tissue sections, to evaluate cartilage repair and degeneration. Mueller matrix imaging of articular cartilage in reflection is of potential utility for non-destructive imaging in clinical and research applications. Therefore, such an imaging system was constructed to measure laser reflectance signals, calibrated, and tested with optical standards.

View Article and Find Full Text PDF

In recent years, research efforts in the field of digital holography have expanded significantly, due to the ability to obtain high-resolution intensity and phase images. The information contained in these images have become of great interest to the machine learning community, with applications spanning a wide portfolio of research areas, including bioengineering. In this work, we seek to demonstrate a high-fidelity simulation of holographic recording.

View Article and Find Full Text PDF

Knowledge of human gingival cell responses to dental monomers is critical for the development of new dental materials. Testing standards have been developed to provide guidelines to evaluate biological functionality of dental materials and devices. However, one shortcoming of the traditional testing platforms is that they do not recapitulate the multi-layered configuration of gingiva, and thus cannot evaluate the layer-specific cellular responses.

View Article and Find Full Text PDF

A cytoskeletal protein keratin 19 (K19) is highly expressed in breast cancer but its effects on breast cancer cell mechanics are unclear. In MCF7 cells where K19 expression is ablated,  knockout cells, suggesting that E-cadherin internalization contributed to defective adhesion. Ultimately, while K19 inhibited cell migration and invasion, it was required for cells to form colonies in suspension.

View Article and Find Full Text PDF

Biopolymer membranes assembled in microfluidic devices offer many biological process- and analysis-related applications. One of the key characteristics of bio-fabricated membranes is their porosity, which regulates the transport of molecules, ions, or particles and contributes to their semi-permeability and selectivity. This study aims to tune the porosity of biofabricated chitosan membranes (CM) using incorporated nanoparticles as templates.

View Article and Find Full Text PDF

Significance: Our study introduces an application of deep learning to virtually generate fluorescence images to reduce the burdens of cost and time from considerable effort in sample preparation related to chemical fixation and staining.

Aim: The objective of our work was to determine how successfully deep learning methods perform on fluorescence prediction that depends on structural and/or a functional relationship between input labels and output labels.

Approach: We present a virtual-fluorescence-staining method based on deep neural networks (VirFluoNet) to transform co-registered images of cells into subcellular compartment-specific molecular fluorescence labels in the same field-of-view.

View Article and Find Full Text PDF

Motility is a key property of a cell, required for several physiological processes, including embryonic development, axon guidance, tissue regeneration, gastrulation, immune response, and cancer metastasis. Therefore, the ability to examine cell motility, especially at a single cell level, is important for understanding various biological processes. Several different assays are currently available to examine cell motility.

View Article and Find Full Text PDF

The controlled biofabrication of stable, aligned collagen hydrogels within microfluidic devices is critically important to the design of more physiologically accurate, longer-cultured on-chip models of tissue and organs. To address this goal, collagen-alginate microgels were formed in a microfluidic channel by calcium crosslinking of a flowing collagen-alginate solution through a cross-channel chitosan membrane spanning a pore allowing ion diffusion but not convection. The gels formed within seconds as isolated islands in a single channel, and their growth was self-limiting.

View Article and Find Full Text PDF

Nanocarriers offer a promising approach to significantly improve therapeutic delivery to solid tumors as well as limit the side effects associated with anti-cancer agents. However, their relatively large size can negatively affect their ability to efficiently penetrate into more interior tumor regions, ultimately reducing therapeutic efficacy. Poor penetration of large agents such as nanocarriers is attributed to factors in the tumor microenvironment such as elevated interstitial fluid pressure (IFP) and fibrillar collagen in the extracellular matrix.

View Article and Find Full Text PDF

Cancer cells gain motility through events that accompany modulation of cell shape and include altered expression of keratins. However, the role of keratins in change of cancer cell architecture is not well understood. Therefore, we ablated the expression of keratin 19 (K19) in breast cancer cells of the MDA-MB-231 cell line and found that cells lacking K19 become more elongated in culture, with morphological reversion toward the parental phenotype upon transduction of KRT19.

View Article and Find Full Text PDF

Flow-assembled chitosan membranes are robust and semipermeable hydrogel structures formed in microfluidic devices that have been used for important applications such as gradient generation and studying cell-cell signaling. One challenge, however, remains unresolved. When a polydimethylsiloxane (PDMS) microchannel with a flow-assembled, deprotonated chitosan membrane (DCM) is treated with anti-adhesion agents such as Pluronic F-127 to prevent biomolecular and cellular adsorption on PDMS, the interaction between DCM and PDMS is compromised and the DCM easily delaminates.

View Article and Find Full Text PDF

Extracellular matrix microstructure and mechanics are crucial to breast cancer progression and invasion into surrounding tissues. The peritumor collagen network is often dense and aligned, features which in vitro models lack. Aspiration of collagen hydrogels led to densification and alignment of microstructure surrounding embedded cancer cells.

View Article and Find Full Text PDF

Significance: We introduce an application of machine learning trained on optical phase features of epithelial and mesenchymal cells to grade cancer cells' morphologies, relevant to evaluation of cancer phenotype in screening assays and clinical biopsies.

Aim: Our objective was to determine quantitative epithelial and mesenchymal qualities of breast cancer cells through an unbiased, generalizable, and linear score covering the range of observed morphologies.

Approach: Digital holographic microscopy was used to generate phase height maps of noncancerous epithelial (Gie-No3B11) and fibroblast (human gingival) cell lines, as well as MDA-MB-231 and MCF-7 breast cancer cell lines.

View Article and Find Full Text PDF

Polarized reflectance from articular cartilage involves light scattering dependent on surface features, sub-surface optical properties, and collagen birefringence. To understand how surface roughness, zonal collagen microstructure, and chondrocyte organization contribute to polarized reflectance signals, experiments were conducted on bovine cartilage explants and osteochondral cores to compare polarized reflectance texture with split lines and relate these signals to cartilage zonal features and chondrocyte distribution. Texture parameter sensitivity to articular surface damage was determined from polarized reflectance maps and optimized to detect surface damage.

View Article and Find Full Text PDF

Melamine induces calcium phosphate (CaP) and calcium oxalate (CaO) crystal formation; however, the physicochemical mechanism is not clear. Recently, we found that melamine has a discriminatory effect on CaP, CaO, and CaP + CaO (Mixed) crystal dissolution. Thus, to delineate the mechanism, we examined crystal interactions through birefringence analysis and found that CaP becomes increasingly birefringent when bound to melamine, while the birefringence of CaO decreases when it forms CaO-melamine cocrystals.

View Article and Find Full Text PDF