Despite the significant health impacts of adverse events associated with drug-drug interactions, no standard models exist for managing and sharing evidence describing potential interactions between medications. Minimal information models have been used in other communities to establish community consensus around simple models capable of communicating useful information. This paper reports on a new minimal information model for describing potential drug-drug interactions.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
February 2022
The study of genetic variants (GVs) can help find correlating population groups and to identify cohorts that are predisposed to common diseases and explain differences in disease susceptibility and how patients react to drugs. Machine learning techniques are increasingly being applied to identify interacting GVs to understand their complex phenotypic traits. Since the performance of a learning algorithm not only depends on the size and nature of the data but also on the quality of underlying representation, deep neural networks (DNNs) can learn non-linear mappings that allow transforming GVs data into more clustering and classification friendly representations than manual feature selection.
View Article and Find Full Text PDFBackground: Determining the association between tumor sample and the gene is demanding because it requires a high cost for conducting genetic experiments. Thus, the discovered association between tumor sample and gene further requires clinical verification and validation. This entire mechanism is time-consuming and expensive.
View Article and Find Full Text PDFMotivation: Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements.
View Article and Find Full Text PDFBackground: Next Generation Sequencing (NGS) is playing a key role in therapeutic decision making for the cancer prognosis and treatment. The NGS technologies are producing a massive amount of sequencing datasets. Often, these datasets are published from the isolated and different sequencing facilities.
View Article and Find Full Text PDFData workflow systems (DWFSs) enable bioinformatics researchers to combine components for data access and data analytics, and to share the final data analytics approach with their collaborators. Increasingly, such systems have to cope with large-scale data, such as full genomes (about 200 GB each), public fact repositories (about 100 TB of data) and 3D imaging data at even larger scales. As moving the data becomes cumbersome, the DWFS needs to embed its processes into a cloud infrastructure, where the data are already hosted.
View Article and Find Full Text PDFBackground: Several query federation engines have been proposed for accessing public Linked Open Data sources. However, in many domains, resources are sensitive and access to these resources is tightly controlled by stakeholders; consequently, privacy is a major concern when federating queries over such datasets. In the Healthcare and Life Sciences (HCLS) domain real-world datasets contain sensitive statistical information: strict ownership is granted to individuals working in hospitals, research labs, clinical trial organisers, etc.
View Article and Find Full Text PDF