Recent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB(1) receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (B6) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB(1) receptor significantly reduced the ethanol preference.
View Article and Find Full Text PDFThe aim of this study was to examine the role of fatty acid amide hydrolase (FAAH) on ethanol sensitivity, preference, and dependence. The deletion of FAAH gene or the inhibition of FAAH by carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (0.1 mg/kg) markedly increased the preference for ethanol.
View Article and Find Full Text PDF1. This study investigated whether (a) cannabinoid CB(1) receptor knockout (CB(1)(-/-)) mice displayed altered gastrointestinal transit and (b) cannabinoid CB(1) and opioid receptors functionally interact in the regulation of gastrointestinal transit. 2.
View Article and Find Full Text PDFThe present study investigated the effect of ethanol (EtOH) exposure and its withdrawal on the central endocannabinoid system utilizing an EtOH vapor inhalation model, which is known to produce functional tolerance and dependence to EtOH. Swiss Webster mice (n=24) were exposed to EtOH vapors for 72h. Mice were sacrificed after 72h following EtOH exposure (n=12) and 24h after its withdrawal (n=12).
View Article and Find Full Text PDFPrevious studies have shown that mice lacking cannabinoid (CB1) receptor gene consume markedly reduced levels of ethanol. Mice lacking the enzyme fatty acid amidohydrolase (FAAH) are severely impaired in their ability to degrade anandamide (AEA) and therefore represent a unique animal model in which to examine the function of AEA in vivo on ethanol-drinking behavior. In the current study, FAAH(-/-) mice were tested for ethanol, saccharin or quinine consumption and preference.
View Article and Find Full Text PDF