Publications by authors named "Ratnakar Vallabhaneni"

Vitamin A deficiency is a serious global health problem that can be alleviated by improved nutrition. Development of cereal crops with increased provitamin A carotenoids can provide a sustainable solution to eliminating vitamin A deficiency worldwide. Maize is a model for cereals and a major staple carbohydrate source.

View Article and Find Full Text PDF

Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.

View Article and Find Full Text PDF

Carotenoids and their apocarotenoid derivatives play essential physiological and developmental roles and provide plants tolerance to a variety of stresses. Carotenoid cleavage dioxygenases mediate the degradation of carotenoids to apocarotenoids. A better understanding of biosynthesis vs.

View Article and Find Full Text PDF

The ability of plants to withstand drought, a potentially major constraint to yield and production, is influenced by abscisic acid (ABA). ABA is synthesized in the cytosol from plastid carotenoid pathway derived precursors, and later inactivated by the action of ABA hydroxylases. Endogenous accumulation of ABA is controlled by both its synthesis and catabolism.

View Article and Find Full Text PDF

Vitamin A deficiency, a global health burden, can be alleviated through provitamin A carotenoid biofortification of major crop staples such as maize (Zea mays) and other grasses in the Poaceae. If regulation of carotenoid biosynthesis was better understood, enhancement could be controlled by limiting beta-carotene hydroxylation to compounds with lower or no nonprovitamin A activity. Natural maize genetic diversity enabled identification of hydroxylation genes associated with reduced endosperm provitamin A content.

View Article and Find Full Text PDF

Enhancement of the carotenoid biosynthetic pathway in food crops benefits human health and adds commercial value of natural food colorants. However, predictable metabolic engineering or breeding is limited by the incomplete understanding of endogenous pathway regulation, including rate-controlling steps and timing of expression in carotenogenic tissues. The grass family (Poaceae) contains major crop staples, including maize (Zea mays), wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), and millet (Pennisetum glaucum).

View Article and Find Full Text PDF

Carotenoids are essential for photosynthesis and photoprotection; they also serve as precursors to signaling molecules that influence plant development and biotic/abiotic stress responses. With potential to improve plant yield and nutritional quality, carotenoids are targets for metabolic breeding/engineering, particularly in the Poaceae (grass family), which includes the major food crops. Depending on genetic background, maize (Zea mays) endosperm carotenoid content varies, and therefore breeding-enhanced carotenoid levels have been of ongoing interest.

View Article and Find Full Text PDF

Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin.

View Article and Find Full Text PDF

Abscisic acid (ABA) plays a vital role in mediating abiotic stress responses in plants. De novo ABA biosynthesis involves cleavage of carotenoid precursors by 9-cis-epoxycarotenoid dioxygenase (NCED), which is rate controlling in leaves and roots; however, additional bottlenecks in roots must be overcome, such as biosynthesis of upstream carotenoid precursors. Phytoene synthase (PSY) mediates the first committed step in carotenoid biosynthesis; with PSY3 described here, maize (Zea mays) and other members of the Poaceae have three paralogous genes, in contrast to only one in Arabidopsis thaliana.

View Article and Find Full Text PDF