Dye sensitizers with wideband absorption covering the near-IR region have long been of interest because they potentially harvest a wide range of solar energies essential to promote photocurrent power conversion efficiencies. In this study, we used time-dependent density functional theory with spin-orbit (SO) interactions to theoretically explore the long-wavelength absorptions and spin-forbidden triplet transitions activated by SO interactions for terpyridyl ruthenium/osmium complex dyes. These dyes feature a Ru(II) sensitizer coordinated with a phosphine ligand and are exemplified by DX1, denoted as [-dichloro-(phenyldimethoxyphosphine)(2,2';6',2″-terpyridyl-4,4',4″-tricarboxylic)Ru].
View Article and Find Full Text PDFD-A-π-A dyes differ from the traditional D-π-A framework having several merits in dye-sensitized solar cell (DSSC) applications. With regard to D-π-A dyes, D-A-π-A dyes red-shift absorption spectra and show particular photostability. Nevertheless, the effects of internal acceptor on the charge transfer (CT) probability are unclear.
View Article and Find Full Text PDFCell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility.
View Article and Find Full Text PDF