Magnesium is a promising hydrogen storage material but requires an efficient catalyst to enhance the sluggish kinetics of its hydrogen desorption/absorption reactions. Niobium catalysts have been shown to accomplish this, but the effective factors for catalysis on hydrogen desorption/absorption of Mg are not well understood. In order to investigate these aspects, various types of Nb oxides were synthesized and mixed with Mg, and their catalytic properties were investigated.
View Article and Find Full Text PDFAerosol particle filtration in most penetrating particle size (MPPS) region is of great challenge for conventional nonwoven filter mats. The present work, therefore, redesigns conventional filter mats by introducing porous structure. A combination of thermally induced phase separation and breath figure mechanism was employed to synthesize porous cellulose triacetate fibers, in conjunction with the volatile solvent methylene chloride.
View Article and Find Full Text PDFMonodisperse, nitrogen-doped hollow carbon spheres of submicron size were synthesized using hexamethoxymethylmelamine as both a carbon and nitrogen source in a short (1 h) microwave-assisted synthesis. After carbonization at 550 °C, porous carbon spheres with a remarkably high nitrogen content of 37.1% were obtained, which consisting mainly of highly basic pyridinic moieties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Proton exchange membrane fuel cells require electrocatalysts with a high platinum (Pt) loading, large active surface area, and favorable hydrodynamic profile for practical applications. Here, we report the design of three-dimensional hierarchical bimodal macroporous carbon nanospheres with an interconnected pore system, which are applied as an electrocatalyst support. Carbon-supported Pt (Pt/C) catalysts were prepared by aerosol spray pyrolysis followed by microwave chemical deposition.
View Article and Find Full Text PDFDespite the strong recent revival of Magnéli phase TiO as a promising conductive material, synthesis of Magnéli phase TiO nanoparticles has been a challenge because of the heavy sintering nature of TiO at elevated temperatures. We have successfully synthesized chain-structured Magnéli phases TiO with diameters under 30 nm using a thermal-induced plasma process. The synthesized nanoparticles consisted of a mixture of several Magnéli phases.
View Article and Find Full Text PDFDual-size nanofibers consisting of a random mixture of nano- and submicron-size nanofibers are promising structures for specific applications such as air filters because of their increased specific surface area and low pressure drop. Synthesis of dual-size nanofibers using one-step electrospinning was reported here for the first time. The formation of well-mixed nano- and submicron-size cellulose-polyvinylpyrrolidone nanofiber composites was accomplished utilizing the physical properties of TEMPO-oxidized cellulose nanofibers (i.
View Article and Find Full Text PDFNumerous studies of the synthesis of mesoporous silica (MPS) particles with tailored properties have been published. Among those studies, tetraethyl orthosilicate (TEOS) is commonly used as a silica source, but tetramethyl orthosilicate (TMOS) is rarely used because its reaction is fast and difficult to control. In this study, MPS particles were synthesized via one-step controlled polymerization of styrene and hydrolysis of TMOS, followed by the addition of hexadecyltrimethylammonium bromide (CTAB) and n-octane.
View Article and Find Full Text PDFWe present an improved synthesis route to hollow silica particles starting from tetramethyl orthosilicate (TMOS) instead of the traditionally used ethyl ester. The silica was first deposited onto polystyrene (PS) particles that were later removed. The here introduced, apparently minor modification in synthesis, however, allowed for a very high purity material.
View Article and Find Full Text PDFA facile method for designing and synthesizing nanostructured carbon particles via ultrasonic spray pyrolysis of a self-organized dual polymer system comprising phenolic resin and charged polystyrene latex is reported. The method produces either hollow carbon particles, whose CO2 adsorption capacity is 3.0 mmol g(-1), or porous carbon particles whose CO2 adsorption capacity is 4.
View Article and Find Full Text PDFThe synthesis and evaluation of porous carbon derived from phenolic resin using a fast and facile spray pyrolysis method has been studied for use as a new electrocatalyst support material. By adding polystyrene latex nanoparticles as a template to the phenolic resin precursor, self-organized macroporous carbon structure was first developed. The mass ratio of phenolic resin to PSL at 0.
View Article and Find Full Text PDF