Retinal haemorrhage stands as an early indicator of diabetic retinopathy, necessitating accurate detection for timely diagnosis. Addressing this need, this study proposes an enhanced machine-based diagnostic test for diabetic retinopathy through an updated UNet framework, adept at scrutinizing fundus images for signs of retinal haemorrhages. The customized UNet underwent GPU training using the IDRiD database, validated against the publicly available DIARETDB1 and IDRiD datasets.
View Article and Find Full Text PDF